Skip to main content

Structure Design and Crystal Growth of UV Nonlinear Borate Materials

  • Chapter
  • First Online:
Structure-Property Relationships in Non-Linear Optical Crystals I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 144))

Abstract

Crystal design and growth of huntite-type and alkaline beryllium borates used for UV and deep-UV frequency conversion are summarized. A series borates crystallizing in the trigonal-huntite structure, ReM3(BO3)4 (Re = La, Ga, Y, Lu; M = Y, Lu, Sc, Ga, Al), has been discovered through structural design with respect to the size tuning on trigonal prism or/and octahedral site in the structure. The structural, optical, and chemical–physical properties are detailed. They all have large NLO coefficients, moderate birefringence for UV phase matching, and robust chemical and physical properties. The NLO coefficients of those containing Bi are larger due to the contribution from the lone-pair electron of Bi, while the UV cutoff of these crystals is redshift for about 100 nm. The systematical synthesis of a series of new alkaline beryllium borates with the stoichiometry NaBeB3O6, ABe2B3O7 (A = K, Rb), and Na2CsBe6B5O15 in order to obtain deep-UV NLO crystals containing new beryllium borate anionic groups or framework was presented. A new beryllium borate anionic group [Be2B3O11]9− was found in the structure of NaBeB3O6 and α-KBe2B3O7. β-KBe2B3O7, γ-KBe2B3O7, RbBe2B3O7, and Na2CsBe6B5O15 consist of 2D alveolate beryllium borate network [Be2BO5]. Furthermore, the adjacent [Be2BO5] layers in these compounds were connected by covalent bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mills AD (1962) Crystallographic data for new rare earth borate compounds, RX3(BO3)4. Inorg Chem 1:960–961

    Article  CAS  Google Scholar 

  2. Ballman AA (1962) New series of synthetic borates isostructural with carbonate mineral huntite. Am Miner 47:1380–1383

    CAS  Google Scholar 

  3. Aka G, Viegas N, Teisseire B et al (1995) Flux growth and characterization of rare-earth-doped nonlinear huntite-type borate crystals – Y1-XNDX(Al0.7Ga0.3)(3)(BO3)(4) and Y1-XYBXAL3(BO3)(4). J Mater Chem 5:583–587

    Article  CAS  Google Scholar 

  4. Leonyuk NI, Leonyuk LI (1995) Growth and characterization of RM(3)(BO3)(4) crystals. Prog Cryst Growth Charact Mater 31:179–278

    Article  CAS  Google Scholar 

  5. Kutovoi SA, Laptev VV, Mastsnev SY (1991) Sov J Quantum Electron 21:131

    Article  Google Scholar 

  6. Peterson GA, Keszler DA, Reynolds TA (2000) Stoichiometric, trigonal huntite borate CeSc3(BO3)(4). Int J Inorg Mater 2:101–106

    Article  CAS  Google Scholar 

  7. Meyn JP, Jensen T, Huber G (1994) Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate. IEEE J Quantum Electron 30:913–917

    Article  CAS  Google Scholar 

  8. He MY, Wang G, Lin ZB et al (1999) Structure of medium temperature phase beta-LaSc3(BO3)(4) crystal. Mater Res Innov 2:345–348

    Article  CAS  Google Scholar 

  9. Li YK, Aka G, Kahn-Harari A et al (2001) Phase transition, growth, and optical properties of NdxLa1-xSc3(BO3)(4) crystals. J Mater Res 16:38–44

    Article  Google Scholar 

  10. Jung ST, Yoon JT, Chung SJ (1996) Phase transition of neodymium yttrium aluminum borate with composition. Mater Res Bull 31:1021–1027

    Article  CAS  Google Scholar 

  11. Ye N, Stone-Sundberg JL, Hruschka MA et al (2005) Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4). Chem Mater 17:2687–2692

    Article  CAS  Google Scholar 

  12. Ye N, Zhang Y, Chen W et al (2006) Growth of nonlinear optical crystal Y0.57La0.72Sc2.71(BO3)(4). J Cryst Growth 292:464–467

    Article  CAS  Google Scholar 

  13. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  14. Chen CT (1993) In: Letokhov VS, Shank CV, Shen YR (eds) Development of new nonlinear optical crystals in the borate series. Harwood Academic Publishers, New York

    Google Scholar 

  15. Armstrong JA, Bloembergen N, Ducuing J et al (1962) Interactions between light waves in a nonlinear dielectric. Phys Rev 127:1918–1939

    Article  CAS  Google Scholar 

  16. Amano S, Mochizuki T (1991) Nolinear Opt 1:297

    CAS  Google Scholar 

  17. Li W, Huang LX, Zhang G et al (2007) Growth and characterization of nonlinear optical crystal Lu0.66La0.95SC2.39(BO3)(4). J Cryst Growth 307:405–409

    Article  CAS  Google Scholar 

  18. Zeng ZD, Shen HY, Huang ML et al (1990) Measurement of the refractive-index and thermal refractive-index coefficients of Nd-YAP crystal. Appl Opt 29:1281–1286

    Article  CAS  Google Scholar 

  19. Kurtz SK, Perry TT (1968) A powder technique for evaluation of nonlinear optical materials. J Appl Phys 39:3798–3813

    Article  CAS  Google Scholar 

  20. Xu X, Ye N (2011) Gd(x)La(1-x)Sc(3)(BO(3))(4): a new nonlinear optical crystal. J Cryst Growth 324:304–308

    Article  CAS  Google Scholar 

  21. Liu LQ, Ma E, Li RF et al (2007) Effects of phonon confinement on the luminescence dynamics of Eu(3+) in Gd(2)O(3) nanotubes. Nanotechnology 18: 015403

    Google Scholar 

  22. Chen XY, Ma E, Liu GK (2007) Energy levels and optical spectroscopy of Er(3+) in Gd(2)O(3) nanocrystals. J Phys Chem C 111:10404–10411

    Article  CAS  Google Scholar 

  23. Xu X, Wang SC, Ye N (2009) A new nonlinear optical crystal Bi(x)La(y)Sc(z)(BO(3))(4) (x plus y plus z = 4). J Alloy Compd 481:664–667

    Article  CAS  Google Scholar 

  24. Wang S, Ye N (2007) Nonlinear optical crystal BiAlGa2(BO3)(4). Solid State Sci 9:713–717

    Article  CAS  Google Scholar 

  25. Brixner LH, Licis MS (1971) Synthesis and structure of BiFe1.35Al1.65(BO3)4. J Solid State Chem 3:172–173

    Article  CAS  Google Scholar 

  26. Liu H, Li J, Fang SH et al (2011) Growth of YAl(3)(BO(3))(4) crystals with tungstate based flux. Mater Res Innov 15:102–106

    Article  CAS  Google Scholar 

  27. Liu H, Chen X, Huang LX et al (2011) Growth and optical properties of UV transparent YAB crystals. Mater Res Innov 15:140–144

    Article  CAS  Google Scholar 

  28. Wang SC, Ye N, Li W et al (2010) Alkaline beryllium borate NaBeB(3)O(6) and ABe(2)B(3)O(7) (A = K, Rb) as UV nonlinear optical crystals. J Am Chem Soc 132:8779–8786

    Article  CAS  Google Scholar 

  29. Wang SC, Ye N (2011) Na2CsBe6B5O15: an alkaline beryllium borate as a deep-UV nonlinear optical crystal. J Am Chem Soc 133:11458–11461

    Article  CAS  Google Scholar 

  30. Chen CT, Wang YB, Wu BC et al (1995) Design and synthesis of an ultraviolet-transparent nonlinear-optical crystal Sr2Be2B2O7. Nature 373:322–324

    Article  CAS  Google Scholar 

  31. Chen CT, Liu GZ (1986) Recent advances in nonlinear optical and electrooptical materials. Annu Rev Mater Sci 16:203–243

    Article  CAS  Google Scholar 

  32. Chen CT, Wu YC, Li RK (1989) The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int Rev Phys Chem 8:65–91

    Article  Google Scholar 

  33. Keszler DA (1996) Borates for optical frequency conversion. Curr Opin Solid State Mater Sci 1:204–211

    Article  CAS  Google Scholar 

  34. Pan S, Smit JP, Watkins B et al (2006) Synthesis, crystal structure, and nonlinear optical properties of Li6CuB4O10: a congruently melting compound with isolated CuB4O10 (6-) units. J Am Chem Soc 128:11631–11634

    Article  CAS  Google Scholar 

  35. Wu HP, Pan SL, Poeppelmeier KR et al (2011) K(3)B(6)O(10)Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc 133:7786–7790

    Article  CAS  Google Scholar 

  36. Halasyamani PS, Poeppelmeier KR (1998) Noncentrosymmetric oxides. Chem Mater 10:2753–2769

    Article  CAS  Google Scholar 

  37. Chang HY, Kim SH, Ok KM et al (2009) New polar oxides: synthesis, characterization, calculations, and structure-property relationships in RbSe(2)V(3)O(12) and TlSe(2)V(3)O(12). Chem Mater 21:1654–1662

    Article  CAS  Google Scholar 

  38. Chang HY, Kim SH, Ok KM et al (2009) Polar or nonpolar? A(+) cation polarity control in A(2)Ti(IO(3))(6) (A = Li, Na, K, Rb, Cs, Tl). J Am Chem Soc 131:6865–6873

    Article  CAS  Google Scholar 

  39. Chang HY, Kim SH, Halasyamani PS et al (2009) Alignment of lone pairs in a new polar material: synthesis, characterization, and functional properties of Li(2)Ti(IO(3))(6). J Am Chem Soc 131:2426–2427

    Article  CAS  Google Scholar 

  40. Sun CF, Hu CL, Xu X et al (2009) BaNbO(IO(3))(5): a new polar material with a very large SHG response. J Am Chem Soc 131:9486–9487

    Article  CAS  Google Scholar 

  41. Chen CT, Wu BC, Jiang AD et al (1985) A new-type ultraviolet SHG crystal – beta-BAB2O4. Sci Sin Ser B Chem Biol Agric Med Earth Sci 28:235–243

    Google Scholar 

  42. Chen CT, Wu YC, Jiang AD et al (1989) New nonlinear-optical crystal: LIB3O5. J Opt Soc Am B Opt Phys 6:616–621

    Article  CAS  Google Scholar 

  43. Wu YC, Sasaki T, Nakai S et al (1993) CsB3O5: a new nonlinear-optical crystal. Appl Phys Lett 62:2614–2615

    Article  CAS  Google Scholar 

  44. Tu JM, Keszler DA (1995) CsLiB6O10 – a noncentrosymmetric polyborate. Mater Res Bull 30:209–215

    Article  CAS  Google Scholar 

  45. Mori Y, Kuroda I, Nakajima S et al (1995) New nonlinear-optical crystal – cesium lithium borate. Appl Phys Lett 67:1818–1820

    Article  CAS  Google Scholar 

  46. Li RK (1989) The interpretation of UV absorption of borate glasses and crystals. J Non-Cryst Solids 111:199–204

    Article  Google Scholar 

  47. Schaffers KI, Keszler DA (1994) Tetrahedral triangular 3-D framework and europium luminescence in the borate BaBe2(BO3)2. Inorg Chem 33:1201–1204

    Article  CAS  Google Scholar 

  48. Schaffers KI, Keszler DA (1990) The layered borate SrBe2(BO3)2. J Solid State Chem 85:270–274

    Article  CAS  Google Scholar 

  49. Schaffers KI, Keszler DA (1993) Alkaline-earth beryllium borate CaBeB2O5. Acta Crystallogr Sect C-Cryst Struct Commun 49:647–650

    Article  Google Scholar 

  50. Luce JL, Schaffers KI, Keszler DA (1994) Structure of the borate Li14Be5B(BO3)9. Inorg Chem 33:2453–2455

    Article  CAS  Google Scholar 

  51. Wen XH, Li RK, Chen CT (2006) Acta Crystallogr Sect C-Cryst Struct Commun 62:121

    Article  Google Scholar 

  52. Zachariasen WH (1931) The crystalline structure of hambergite, Be2BO3(OH). Z Kristall 76:289–302

    CAS  Google Scholar 

  53. Zachariasen WH, Plettinger HA, Marezio M (1963) Structure and birefringence of hambergite, Be2BO3.OH. Acta Crystallogr 16:1144–1146

    Article  Google Scholar 

  54. McMillen CD, Hu J, VanDerveer D et al (2009) Trigonal structures of ABe(2)BO(3)F(2) (A = Rb, Cs, Tl) crystals. Acta Crystallogr Sect B-Struct Sci 65:445–449

    Article  Google Scholar 

  55. McMillen CD, Kolis JW (2008) Hydrothermal crystal growth of ABe(2)BO(3)F(2) (A = K, Rb, Cs, Tl) NLO crystals. J Cryst Growth 310:2033–2038

    Article  CAS  Google Scholar 

  56. Mei L, Huang X, Wang Y et al (1995) Crystal-structure of KBe2BO3F2. Z Kristall 210:93–95

    Article  CAS  Google Scholar 

  57. Mei LF, Wang YB, Chen CT (1994) Crystal-structure of sodium beryllium borate fluoride. Mater Res Bull 29:81–87

    Article  CAS  Google Scholar 

  58. Chen CT, Wang GL, Wang XY et al (2009) Deep-UV nonlinear optical crystal KBe(2)BO(3)F(2)-discovery, growth, optical properties and applications. Appl Phys B-Lasers Opt 97:9–25

    Article  CAS  Google Scholar 

  59. Qi H, Chen CT (2001) Growth of a new nonlinear optical crystal Ba2Be2B2O7 by TSSG method. Chem Lett 352–353

    Google Scholar 

  60. Qi H, Chen CT (2001) Synthesis and characterization of Ba2Be2B2O7. Inorg Chem Commun 4:565–567

    Article  CAS  Google Scholar 

  61. Chen CT, Bai L, Wang ZZ et al (2006) Development of new NLO crystals for UV and IR applications. J Cryst Growth 292:169–178

    Article  CAS  Google Scholar 

  62. Li W, Ye N (2007) Acta Crystallogr Sect E Struct Rep 63:1160

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants Nos. 60608018, 90922035 and 50872132) and the National High Technology Research and Development Program of China (Grant No. 2006AA030107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ye, N. (2012). Structure Design and Crystal Growth of UV Nonlinear Borate Materials. In: Wu, XT., Chen, L. (eds) Structure-Property Relationships in Non-Linear Optical Crystals I. Structure and Bonding, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_69

Download citation

Publish with us

Policies and ethics