Advertisement

Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions

  • Rosalie K. Hocking
  • Edward I. SolomonEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 142)

Abstract

Carl Ballhausen made a wide range of seminal contributions to ligand field theory and its application to ground state and ligand field excited state spectroscopies. These provided a fundamental basis for probing the nature of transition metal complexes using their visible spectra and a range of magnetic spectroscopies. The advent of synchrotrons provided access to high flux electromagnetic radiation that could be tuned across a wide range of energies including X-ray. This expanded the scope of spectroscopic techniques available to inculde X-ray Absorption Edge Spectroscopies. Paralleling a visible absorption experiment, X-ray spectra (metal K-edge, i.e. 1s→3d and metal L-edge, i.e. 2p→3d) taken at a synchrotron are dominated by ligand field splittings, electron repulsion effects and covalency. These can be used to obtain important insight into the properties of a diverse range of materials from solar cells to the catalytic centers of metalloenzymes. Herein we systematically consider applications of ligand field theory to X-ray absorption edge transitions.

Keywords

Ligand-field theory Spectroscopy Magnetism X-ray Absorption Spectroscopy Synchrotron Molecular Orbital Theory 

Notes

Acknowledgments

E.I.S. would like to acknowledge NIH GM 040392 and NSF CHE 0948211 grants for funding this research. R.K.H. would like to thank Monash University for a beam-line research fellowship.

References

  1. 1.
    Ballhausen CJ (1962) Introduction to ligand field theory. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Ballhausen CJ (1979) Molecular electronic structures of transition metal complexes. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Ballhausen CJ (1979) J Chem Ed 56:215–218CrossRefGoogle Scholar
  4. 4.
    Ballhausen CJ, Gray HB (1971) ACS monograph 168 (Coord Chem v1), 3–83Google Scholar
  5. 5.
    Cotton FA, Ballhausen CJ (1956) J Chem Phys 25:617–619CrossRefGoogle Scholar
  6. 6.
    Liehr AD, Ballhausen CJ (1957) Phys Rev 106:1161–1163CrossRefGoogle Scholar
  7. 7.
    Liehr AD, Ballhausen CJ (1959) Ann Phys 2:134–155Google Scholar
  8. 8.
    Gray HB, Malstroem BG (1983) Comments Inorg Chem 2:2024–2028CrossRefGoogle Scholar
  9. 9.
    Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314CrossRefGoogle Scholar
  10. 10.
    Solomon EI, Hare JW, Gray HB (1976) Proc Natl Acad Sci 73:1389–1393CrossRefGoogle Scholar
  11. 11.
    Solomon EI, Hanson MA (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol 2. Wiley, New YorkGoogle Scholar
  12. 12.
    Cramer SP, Hodgson KO (1979) Prog Inorg Chem 25:1–39CrossRefGoogle Scholar
  13. 13.
    Brown GS, Doniach S (1980) Synch Radiat Res 353–385Google Scholar
  14. 14.
    Glaser T, Hedman B, Hodgson KO, Solomon EI (2000) Acc Chem Res 33:859–868CrossRefGoogle Scholar
  15. 15.
    Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:6297–6314CrossRefGoogle Scholar
  16. 16.
    DeBeer George S, Metz M, Szilagyi RK, Wang H, Cramer SP, Lu Y, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2001) J Am Chem Soc 123:5757–5767CrossRefGoogle Scholar
  17. 17.
    George SJ, Lowery MD, Solomon EI, Cramer SP (1993) J Am Chem Soc 115:2968–2969CrossRefGoogle Scholar
  18. 18.
    Wasinger EC, deGroot FMF, Hedman B, Hodgson KO, Solomon EI (2003) J Am Chem Soc 125:12894–12906CrossRefGoogle Scholar
  19. 19.
    Hocking RK, Wasinger EC, deGroot FMF, Hodgson KO, Hedman B, Solomon EI (2006) J Am Chem Soc 128:10442–10451CrossRefGoogle Scholar
  20. 20.
    Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New YorkGoogle Scholar
  21. 21.
    Zhang HH, Hedman B, Hodgson KO (1999). In: Solomon EI, Lever B (eds). Inorganic electron structure and spectroscopy, John Wiley and Sons, USA 1:315–554Google Scholar
  22. 22.
    Shadle SE, Penner-Hahn J, Schuger HJ, Hedman B, Hodgson KO, Solomon EI (1993) J Am Chem Soc 115:767–776CrossRefGoogle Scholar
  23. 23.
    Kau L-S, Spira-Solomon DJ, Penner-Hahn J, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109:6433–6442CrossRefGoogle Scholar
  24. 24.
    Hahn JE, Scott RA, Hodgson KO, Doniach S, Desjardins SR, Solomon EI (1982) Chem Phys Lett 88:585–588CrossRefGoogle Scholar
  25. 25.
    Gerwith AA, Cohen SL, Schugar HJ, Solomon EI (1987) Inorg Chem 26:7Google Scholar
  26. 26.
    DeBeer George S, Brant P, Solomon EI (2005) J Am Chem Soc 127:667–674CrossRefGoogle Scholar
  27. 27.
    Smith TA, Penner-Hahn JE, Berding MA, Doniach S, Hodgson KO (1985) J Am Chem Soc 107:5945–5955CrossRefGoogle Scholar
  28. 28.
    Manne R, Aberg T (1970) Chem Phys Lett 7:282–284CrossRefGoogle Scholar
  29. 29.
    Larsson S (1977) Phys Scr 16:378–380CrossRefGoogle Scholar
  30. 30.
    Haas C, Sawatzky GA (1981) Phys Rev B 23:4369–4380CrossRefGoogle Scholar
  31. 31.
    Shadle SE, Hedman B, Hodgson KO, Solomon EI (1994) Inorg Chem 33:4235–4255CrossRefGoogle Scholar
  32. 32.
    Sugano S, Tanabe Y (1970) Multiplets of transition-metal ions in crystals. Academic, New YorkGoogle Scholar
  33. 33.
    deGroot FMF, Hu ZW, Lopez MF, Kaindi G, Guillot F, Tronc M (1994) J Chem Phys 101:6570–6576CrossRefGoogle Scholar
  34. 34.
    Thole BT, van der Laan G (1988) Phys Rev 38B:3158–3170Google Scholar
  35. 35.
    deGroot FMF (2005) Coord Chem Rev 249:31–63CrossRefGoogle Scholar
  36. 36.
    Shadle SE, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117:2259–2272CrossRefGoogle Scholar
  37. 37.
    Kennepohl P, Solomon EI (2003) Inorg Chem 42:689–695CrossRefGoogle Scholar
  38. 38.
    Sarangi R, Nermeen A, Fujisawa K, Tolman WB, Hedmand B, Hodgson KO, Solomon EI (2006) J Am Chem Soc 128:8286–8296CrossRefGoogle Scholar
  39. 39.
    Hocking RK, Debeer George S, Gross Z, Walker FA, Hodgson KO, Hedman B, Solomon EI (2009) Inorg Chem 48:1678–1688CrossRefGoogle Scholar
  40. 40.
    Figgis BN, Hitchman MA (2000) Ligand field theory and its applications. Wiley-VCH, New YorkGoogle Scholar
  41. 41.
    Jorgenson CK (1962) Prog Inorg Chem 4:73–124CrossRefGoogle Scholar
  42. 42.
    Jorgenson CK (1971) Modern aspects of ligand field theory. North-Holland Publishing Company, Amsterdam, LondonGoogle Scholar
  43. 43.
    Cowan RD (1981) The theory of atomic structure and spectra. University of California Press, BerkeleyGoogle Scholar
  44. 44.
    Thole BT, van der Laan G, Fuggle JC, Sawatzky GA, Karanatak RC, Esteva J-M (1985) Phys Rev B 32:5107–5118CrossRefGoogle Scholar
  45. 45.
    van der Laan G, Thole BT, Sawatzky GA (1987) Phys Rev B 37:6587–6589CrossRefGoogle Scholar
  46. 46.
    Hocking RK, Wasinger EC, Yan Y, DeGroot FMF, Walker FA, Hodgson KO, Hedman B, Solomon EI (2007) J Am Chem Soc 129:113–125CrossRefGoogle Scholar
  47. 47.
    deGroot F (2001) Chem Rev 101:1779–1808CrossRefGoogle Scholar
  48. 48.
    De Groot F, Kotani A (2008) Core level spectroscopy of solids. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NWGoogle Scholar
  49. 49.
    Dari-Abu K, Barclay SJ, Riley PE, Raymond KN (1983) Inorg Chem 22:3085–3089CrossRefGoogle Scholar
  50. 50.
    Gerrett TM, Miller PW, Raymond KN (1989) Inorg Chem 28:128–133CrossRefGoogle Scholar
  51. 51.
    Deneux M, Meiller R, Benoit RL (1968) Can J Chem 46:1383CrossRefGoogle Scholar
  52. 52.
    Hocking RK, Debeer George S, Raymond KN, Hodgson KO, Hedman B, Solomon EI (2010) J Am Chem Soc 132:4006–4015CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Monash Centre for Synchrotron Science, The Australian Centre for Electromaterials Science and School of ChemistryMonash UniversityMelbourneAustralia
  2. 2.Department of ChemistryStanford UniversityStanfordUSA
  3. 3.Stanford Synchrotron Radiation Lightsource, SLAC, Stanford UniversityStanfordUSA

Personalised recommendations