Skip to main content

Chemistry as a “Manifestation of Quantum Phenomena” and the Born–Oppenheimer Approximation?

  • Chapter
  • First Online:
Molecular Electronic Structures of Transition Metal Complexes II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 143))

Abstract

When considering the work of Carl Ballhausen on vibrational spectra, it is suggested that his use of the Born–Oppenheimer approximation is capable of some refinement and extension in the light of later developments. A consideration of the potential energy surface in the context of a full Coulomb Schrödinger Hamiltonian in which translational and rotational motions are explicitly considered would seem to require a reformulation of the Born–Oppenheimer approach. The resulting potential surface for vibrational motion should be treated, allowing for the rotational motion and the nuclear permutational symmetry of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This Hamiltonian results from the standard canonical quantization of electrodynamics if it is assumed that particle speeds are negligible compared to the speed of light, and all charge–photon interactions are discarded; the Coulomb gauge condition must also be imposed [8].

  2. 2.

    The work was completed in 1944 and was actually received by the journal in October 1948.

  3. 3.

    The discussion below is aimed at the general polyatomic case. The cases A = 1, A = 2, A = 3 (the nuclear configurations that define, respectively, a point, a line, and a plane) may be dealt with by special techniques that are not considered here as it would deflect the main thrust of the argument.

  4. 4.

    The eigenfunctions expand in integer powers of κ; most of the eigenvalues expand in even powers of κ.

  5. 5.

    Although it seems very likely that the special case of this approach, called in [2] the Longuet–Higgins approach, in which the nuclei are regarded as fixed in the electronic problem and as variables in the nuclear motion problem could be treated as above.

References

  1. Ballhausen CJ (1979) J Chem Ed 56:357

    Article  CAS  Google Scholar 

  2. Ballhausen CJ, Hansen AE (1972) Ann Rev Phys Chem 23:15

    Article  CAS  Google Scholar 

  3. Sutcliffe BT, Tennyson J (1987) In: Avery JS, Dahl JP, Hansen AE (eds) Understanding molecular properties. Springer-Verlag, Berlin, p 449

    Chapter  Google Scholar 

  4. Sutcliffe BT (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding Part 1. Springer-Verlag, Berlin, p 1

    Google Scholar 

  5. Primas H (1998) Acta Polytechnica Scand 91:83

    Google Scholar 

  6. Eckart C (1935) Phys Rev 47:552

    Article  CAS  Google Scholar 

  7. Watson JKG (1968) Mol Phys 15:479

    Article  CAS  Google Scholar 

  8. Woolley RG (2003) In: Wilson S (ed) Handbook of molecular physics and quantum chemistry, Vol 1 fundamentals, Part 7, Chap 40. Wiley, London, p 679

    Google Scholar 

  9. Kato T (1951) Trans Am Math Soc 70:212

    Article  Google Scholar 

  10. Thirring W (1987) In: Kilminster CW (ed) Schrödinger, centenary celebrations of a polymath. Cambridge University Press, Cambridge, p 65

    Google Scholar 

  11. Born M, Oppenheimer JR (1927) Ann Phys 84:457

    Article  CAS  Google Scholar 

  12. Sutcliffe BT, Woolley RG (2005) Phys Chem Chem Phys 7:3664

    Article  CAS  Google Scholar 

  13. Mead CA (1992) Rev Mod Phys 64:51

    Article  CAS  Google Scholar 

  14. Combes JM, Duclos P, Seiler R (1981) In: Velo D, Wightman A (eds) Rigorous results in atomic and molecular physics. Plenum, New York, p 185

    Google Scholar 

  15. Klein M, Martinez A, Seiler R, Wang XP (1992) Commun Math Phys 143:607

    Article  Google Scholar 

  16. Born M, Huang K (1955) Dynamical theory of crystal lattices. Oxford University Press, Oxford, Appendix 8

    Google Scholar 

  17. Hagedorn G (1980) Commun Math Phys 77:1

    Article  Google Scholar 

  18. Hagedorn G, Joye A (2001) Commun Math Phys 223:583

    Article  Google Scholar 

  19. Hagedorn G (1990) Theor Chim Acta 77:163

    Article  CAS  Google Scholar 

  20. Schmelzer A, Murrell JN (1985) Int J Quant Chem 28:288

    Article  Google Scholar 

  21. Collins MA, Parsons DF (1993) J Chem Phys 99:6756

    Article  CAS  Google Scholar 

  22. Braams BJ, Bowman JB (2009) Int Rev Phys Chem 28:577

    Article  CAS  Google Scholar 

  23. Cassam-Chenai P, Patras F (2008) J Math Chem 44:938

    Article  CAS  Google Scholar 

  24. Weyl H (1946) The classical groups: their invariants and representations, 2nd edn. Princeton University, Princeton, p 75

    Google Scholar 

  25. Helffer B, Sjöstrand SJ (1984) Commun Partial Differ Equ 9:337

    Article  Google Scholar 

  26. Katriel J, Paldus J, Pauncz R (1985) Int J Quant Chem 28:181

    Article  Google Scholar 

  27. Katriel J (2001) J Mol Struct THEOCHEM 547:1

    Article  CAS  Google Scholar 

  28. Sutcliffe BT (2010) Theor Chem Acc 127:121

    Article  CAS  Google Scholar 

  29. Sutcliffe BT (1993) J Chem Soc Faraday Trans 89:2321

    Article  CAS  Google Scholar 

  30. Sutcliffe BT (2000) Adv Chem Phys 114:1

    Article  Google Scholar 

  31. Pachuki K, Komasa J (2009) J Chem Phys 130:164113

    Article  Google Scholar 

  32. Henderson JR, Tennyson J, Sutcliffe BT (1993) J Chem Phys 98:7191

    Article  CAS  Google Scholar 

  33. Miller S, Tennyson J (1988) Chem Phys Lett 145:117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some of this work developed as part of ESA contract 21790/08/NL/HE and was carried out at the Universite Libre de Bruxelles. I thank the Fonds National de la Recherche Scientifique (F.R.S.-FNRS, contracts FRFC and IISN), the Universite libre de Bruxelles, and the “Action de Recherches Concertees de la Communaute francaise de Belgique” for accommodation and the provision of library and computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Sutcliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sutcliffe, B.T. (2011). Chemistry as a “Manifestation of Quantum Phenomena” and the Born–Oppenheimer Approximation?. In: Mingos, D., Day, P., Dahl, J. (eds) Molecular Electronic Structures of Transition Metal Complexes II. Structure and Bonding, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_44

Download citation

Publish with us

Policies and ethics