Skip to main content

Concurrent Pathways in the Phase Transitions of Alloys and Oxides: Towards an Unified Vision of Inorganic Solids

  • Chapter
  • First Online:
Inorganic 3D Structures

Part of the book series: Structure and Bonding ((STRUCTURE))

Abstract

The study of phase transitions is usually restricted to two to three transformations. Examples of such transitions include the CaF2 → PbCl2 → Ni2In in alloys, the NaCl → CrB → CsCl or the well documented transformation olivine → spinel of the oxides A 2 XO4. These transitions, traditionally regarded as partial processes, have prevented the construction of wider structure maps. One of the scarce examples of these maps was reported by Léger and Haines (Eur J Solid State Inorg Chem 34:785–796, 1997) concerning the phase transitions of AX 2 compounds (dihalides and dioxides), where increasing the coordination number of the A atom is linked to the pressure increase. The structural information, collected in these maps, is always of interest because it limits the number of possible transition paths which may relate a structure-type into another. However, a careful analysis of the partial phase transitions undergone by different compounds, at high temperature and high pressure, reveals that the partial transitions are not isolated processes but they overlap, forming a long, rational pathway that connects all the structures in a coherent manner. Alloys and their related oxides show a similar trend along their concurrent pathways which complement each other. In this work, the analysis is restricted to the AX 2 alloys and their corresponding oxides AX 2 O4, and the results demonstrate that there exists a unifying principle that can be inferred through the simultaneous analysis of all the phase transitions involved in the concurrent structural journeys carried out by both types of compounds. The AX 2 alloys begin the walk in the fluorite-type structure, ending in the MoSi2-type structure. In the case of the oxides AX 2 O4, their cation arrays follow a concurrent pathway that, starting at the filled fluorite-type structure, ends in the final Sr2PbO4-type structure. These structural “journeys” also allows for the discovery of several “missing links” (structure types) which fit into the general sequence and help one understand the whole transitions pathway as a rational process, which takes place simultaneously in the alloys as well as in the cation arrays of the oxides. Very recent works show that alkali metals (Na and K) also join the walk. The extended Zintl–Klemm concept (EZKC) and the concept that relates of oxidation–pressure–temperature effects provide a basis for understanding the observed transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bcc sc:

Body-centred cubic, simple cubic

bct:

Body-centred tetragonal

CN:

Coordination number

ELF:

Electron localization function

EZKC:

Extended Zintl–Klemm concept

hcp fcc:

Hexagonal close-packed, face-centred cubic

HP:

High pressure

HT:

High temperature

LP:

Lewis pair

LT:

Low temperature

RT:

Room temperature

TCTP:

Tri-capped trigonal prism

References

  1. Martínez-Cruz LA, Ramos-Gallardo A, Vegas A (1994) MSn and MSnO3 (M = Ca, Sr, Ba): new examples of oxygen-stuffed alloys. J Solid State Chem 110:397–398

    Article  Google Scholar 

  2. Beck HP, Lederer G (1993) Thermische Dilatation und Hochdruckverhalten der Zintl-Phasen CaSn und BaSn. Z anorg allg Chem 619:897–900

    Article  CAS  Google Scholar 

  3. Vegas A (2000) Cations in inorganic solids. Crystallogr Rev 7:189–286

    Article  CAS  Google Scholar 

  4. Vegas A, Jansen M (2002) Structural relationships between cations and alloys; an equivalence between oxidation and pressure. Acta Crystallogr B58:38–53

    CAS  Google Scholar 

  5. O’Keeffe M, Hyde BG (1985) An alternative approach to non-molecular crystal structures: with emphasis on the arrangement of cations. Struct Bond 61:77–144

    Article  Google Scholar 

  6. Grzechnik A, Vegas A, Syassen K, Loa I, Hanfland M, Jansen M (2000) Reversible antifluorite to anticotunnite phase transition in Li2S at high pressures. J Solid State Chem 154:603–611

    Article  CAS  Google Scholar 

  7. Vegas A, Grzechnik A, Syassen K, Loa I, Hanfland M, Jansen M (2001) Reversible phase transitions in Na2S under pressure: a comparison with the cation array in Na2SO4. Acta Crystallogr B 57:151–156

    Article  CAS  Google Scholar 

  8. Vegas A, Grzechnik A, Hanfland M, Mühle C, Jansen M (2002) Antifluorite to Ni2In-type phase transition in K2S at high pressure. Solid State Sci 4:1077–1081

    Article  CAS  Google Scholar 

  9. Rasmussen SE, Jorgensen JE, Lundtoft B (1996) Structures and phase transitions of Na2SO4. J Appl Crystallogr 29:42–47

    Article  CAS  Google Scholar 

  10. Léger JM, Haines J (1997) Crystal chemistry of the AX2 compounds under pressure. Eur J Solid State Inorg Chem 34:785–796

    Google Scholar 

  11. Blatov VA, Peskov MV (2006) A comparative crystallochemical analysis of binary compounds and simple anhydrous salts containing pyramidal anions LO3 (L = S, Se, Te, Cl, Br, I). Acta Crystallogr B 62:457–466

    Article  CAS  Google Scholar 

  12. Blatov VA (2009) http://www.topos.ssu.samara.ru

  13. Blatov VA (2011) Crystal structures of inorganic oxoacid salts perceived as cation arrays: a periodic-graph approach. Struct Bond. DOI: 10.1007/430_2010_34

    Google Scholar 

  14. Vegas A, García-Baonza V (2007) Pseudoatoms and preferred skeletons in crystals. Acta Crystallogr B 63:339–345

    Article  CAS  Google Scholar 

  15. Bramnik KG, Ehrenberg H (2004) Study of the (Na2O)-(MoO3) system. Na6Mo11O36-a new oxide with anatase-related structure and the crystal structures of Na2MoO4. Z anorg allg Chem 630:1336–1341

    Article  CAS  Google Scholar 

  16. Liu L-G, Bassett WA (1986) Elements, oxides, silicates. High-pressure phases with implications for the earth’s interior. In: Oxford monographs on geology and geophysics, vol 4. Clarendon press, Oxford, pp 168–172

    Google Scholar 

  17. Tarte P (1965) Olivine structure of cadmium ortho-germanate. J Inorg Nucl Chem 27:1933–1938

    Article  CAS  Google Scholar 

  18. Wadsley AD, Reid AF, Ringwood AE (1968) The high pressure form of Mn2GeO4, a member of the olivine group. Acta Crystallogr B 24:740–742

    Article  CAS  Google Scholar 

  19. Morimoto N, Tokonami M, Koto K, Nakajima S (1972) Crystal structures of the high pressure polymorphs of Mn2GeO4. Am Mineral 57:62–75

    CAS  Google Scholar 

  20. Eysel W, Hahn T (1970) Polymorphism and solid solution of Ca2GeO4 and Ca2SiO4. Z Kristallogr 131:322–341

    Article  CAS  Google Scholar 

  21. Nishikawa M, Akimoto S (1971) Bridgman anvil with an internal heating system for phase transformation studies. High Temp High Press 3:161–176

    CAS  Google Scholar 

  22. Zintl E, Harder A, Dauth B (1934) The atomic structure of the oxides, sulfides, selenides and telluides of lithium, sodium and kalium. Z Elektrochem 40:588–593

    CAS  Google Scholar 

  23. Schön JC, Cancarevic Z, Jansen M (2004) Structure prediction of high-pressure phases for alkali metal sulfides. J Chem Phys 121:2289–2304

    Article  CAS  Google Scholar 

  24. Zheng C, Hoffmann R (1989) Conjugation in the 3-connected net. The AlB2 and ThSi2 structures and their transition metal derivatives. Inorg Chem 28:1074–1080

    Article  CAS  Google Scholar 

  25. Fang JH, Newnham RE (1965) Crystal structure of sinhalite. Mineral Mag 35:196–199

    Article  CAS  Google Scholar 

  26. Capponi JJ (1973) Thesis. Université Scientifique et Médicale de Grenoble (France)

    Google Scholar 

  27. Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P, Boehler R (1999) Synthesis of cubic silicon nitride. Nature 400:340–342

    Article  CAS  Google Scholar 

  28. Wang H, Chen Y, Kaneta Y, Iwata S (2006) First-principles investigation of the structural electronic and optical properties of olivine-Si3N4 and olivine-Ge3N4. J Phys Condens Matter 18:10663–10676

    Article  CAS  Google Scholar 

  29. Fischmeister HF (1962) Röntgenkristallographische Ausdehnungsmessungen an einigen Alkalisulfaten. Ein Beitrag zur kenntniss der Anionenfehlordnung in I-Na2SO4. Monatsh Chem 93:420–434

    Article  CAS  Google Scholar 

  30. Tomaszewski PE (2002) Golden book of phase transitions. Wroclaw 1:1–123

    Google Scholar 

  31. Haase A, Brauer G (1978) Hydratstufen und Kristallstrukturen von Bariumchlorid. Z anorg allg Chem 441:181–195

    Article  CAS  Google Scholar 

  32. Nilsson L, Thomas JO, Tofield BC (1980) The structure of the high temperature solid electrolyte Li2SO4 at 908 K. J Phys C 13:6441–6451

    Article  CAS  Google Scholar 

  33. Vegas A, Martin RL, Bevan DJM (2009) Compounds with a “stuffed” anti-bixbyite-type structure, analysed in terms of the Zintl-Klemm and coordination-defect concepts. Acta Crystallogr B 65:11–21

    Article  CAS  Google Scholar 

  34. Parfitt DC, Keen DA, Hull S, Crichton WA, Mezouar M, Wilson M, Madden PA (2005) High pressure forms of lithium sulphate. Structural determination and computer simulation. Phys Rev B 72:054121(7)

    Google Scholar 

  35. Scherf C, Paulus W, Heger G, Hahn T (2000) Crystal structure analysis of the orthorhombic phase II of KLiSO4. Physica B 276:247–249

    Article  Google Scholar 

  36. Zachariasen WH, Buckley HE (1931) The crystal lattice of anhydrous sodium sulphite, Na2SO3. Phys Rev 37:1295–1305

    Article  CAS  Google Scholar 

  37. Larsson LO, Kierkegard P (1969) The crystal structure of sodium sulphite. A refinement allowing for the effect of crystal twinning Acta Chem Scand 23:2253–2260

    CAS  Google Scholar 

  38. Oertel G (1961) Über die Struktur von Caesium-Wismut-Fotokathoden. Z anorg allg Chem 309:210–225

    Article  Google Scholar 

  39. Schütte M, Wartchow R, Binnewies M (2003) Shape controlling synthesis. Formation of Fe3Si by the reaction of iron with silicon tetrachloride and crystal structure refinement. Z anorg allg Chem 629:1846–1850

    Article  CAS  Google Scholar 

  40. Santamaría-Pérez D, Nuss J, Haines J, Jansen M, Vegas A (2004) Iron silicides and their corresponding oxides: a high-pressure study of Fe5Si3. Solid State Sci 6:673–678

    Article  CAS  Google Scholar 

  41. Reynaud F (1976) Use of electron-diffraction to demonstrate excess nickel atom ordering with respect to stoichiometry in nickel-rich β-NiAl alloys. Formation of Ni2Al superstructure. J Appl Crystallogr 9:263–268

    Article  Google Scholar 

  42. Fritz JN, Olinger B (1984) Equation of state of sodium. J Chem Phys 80:2864–2871

    Article  CAS  Google Scholar 

  43. Ogg A (1916) The crystal structures of the isomorphic sulphates of K, NH4, Rb and Cs. Phil Mag Serie 6(32):518–525

    Article  Google Scholar 

  44. Sommer H, Hoppe R (1977) Crystal-structure of Cs2S and a remark about Cs2Se, Cs2Te, Rb2Se and Rb2Te. Z anorg allg Chem 429:118–130

    Article  CAS  Google Scholar 

  45. Zintl E, Harder A, Dauth B (1939) Gitterstruktur der Oxide, Sulfide, Selenide und Telluride des Lithiums, Natriums und Kaliums. Z anorg allg Chem 241:281–304

    Article  Google Scholar 

  46. Andersen L, Stroemberg D (1986) The structure of potassium sulfite. Acta Chem Scand A 40:479–480

    Article  Google Scholar 

  47. Robinson MT (1958) The crystal structures of β-K2SO4 and of β-K2PO3F. J Phys Chem 62:925–928

    Article  CAS  Google Scholar 

  48. van den Berg AJ, Tuinstra F (1978) Space group and structure of α-K2SO4. Acta Crystallogr B 34:3177–3188

    Article  Google Scholar 

  49. Errandonea D, Santamaría-Pérez D, Vegas A, Nuss J, Jansen M, Rodríguez-Hernández P, Muñoz A (2008) Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations. Phys Rev B 77:094113

    Article  CAS  Google Scholar 

  50. Kudielka H (1977) Crystal-structure of Fe2Si, its relationship to ordered structures of α-(Fe, Si) mixed-crystal and to Fe5Si3 structure. Z Kristallogr 145:177–189

    Article  CAS  Google Scholar 

  51. Hendricks SB, Kosting PR (1930) The crystal structure of Fe2P, Fe2N, Fe3N and FeB. Z Kristallogr 74:511–533

    CAS  Google Scholar 

  52. Britvin SN, Rudashevsky NS, Krivovichev SV, Burns PC, Polekhovsky YuS (2002) Allabogdanite, (Fe, Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Am Mineral 87:1245–1249

    CAS  Google Scholar 

  53. Chenevier B, Soubeyroux JL, Bacmann M, Fruchart D, Fruchart R (1987) The high- temperature orthorhombic-reversible-hexagonal phase-transformation of FeMnP. Solid State Comm 64:57–61

    Article  CAS  Google Scholar 

  54. Brackett EB, Brackett TE (1963) Sass RL (1963) The crystal structures of barium chloride, barium bromide and barium iodide. J Phys Chem 67:2132–2135

    Article  CAS  Google Scholar 

  55. Léger JM, Atouf A (1992) High-pressure phase transformation in cotunnite-type BaCl2. J Phys Condens Matter 4:357–365

    Article  Google Scholar 

  56. Léger JM, Haines J, Atouf A (1995) The post-cotunnite phase in BaCl2, BaBr2 and BaI2 under high-pressure. J Appl Cryst 28:416–423

    Article  Google Scholar 

  57. Hyde BG, Andersson S (1989) Inorganic Crystal Structures. Chapters III, VI, and VIII. Wiley, New York

    Google Scholar 

  58. Le Roy J, Aléonard S (1972) Structure des orthofluoroberyllates de lithium MLiBeF4. Acta Crystallogr B 28:1383–1387

    Article  Google Scholar 

  59. Solans X, Calvet MT, Martínez-Sarrión ML, Mestres L, Bakkali A, Bocanegra E, Mata J, Herraiz M (1999) Thermal analysis and X-ray diffraction study on LiKSO4: a new phase transition. J Solid State Chem 148:316–324

    Article  CAS  Google Scholar 

  60. Natta G, Corradini P, Allegra G (1961) The different crystalline modifications of TiCl3, a catalyst component for the polymerization of α-olefins. I: α-, β-, γ-TiCl3. II: δ-TiCl3. J Polymer Sci 51:399–410

    Article  CAS  Google Scholar 

  61. Tsai KR, Harris PM, Lassettre EN (1956) The crystal structure of tricesiun monoxide. J Phys Chem 60:345–347

    Article  CAS  Google Scholar 

  62. Zachariasen WH (1948) Crystal chemical studies of the 5f-Series of elements. I. New structure types. Acta Crystallogr 1:265–268

    Article  CAS  Google Scholar 

  63. Santamaría-Pérez D, Vegas A (2003) The Zintl-Klemm concept applied to cations in oxides. I. The structures of aluminates. Acta Crystallogr B 59:305–323

    Article  CAS  Google Scholar 

  64. Santamaría-Pérez D, Vegas A, Liebau F (2005) The Zintl-Klemm concept applied to cations in oxides. II. The structures of silicates. Struct Bond 118:121–177

    Article  CAS  Google Scholar 

  65. Jamieson JC (1963) Crystal structures of titanium, zirconium, and hafnium at high pressures. Science 140:72–73

    Article  CAS  Google Scholar 

  66. Schönberg N (1954) An X-ray study of the tantalum-nitrogen system. Acta Chem Scand 8:213–220

    Article  Google Scholar 

  67. Andersson S (1959) The Crystal structure of the so-called δ-titanium oxide and its structural relation to the ω-phases of some binary alloy systems of titanium. Acta Chem Scand 13:415–419

    Article  CAS  Google Scholar 

  68. Vegas A, Mejía-López J, Romero AH, Kiwi M, Santamaría-Pérez D, García-Baonza V (2004) Structural similarities between Ti metal and titanium oxides: implications on the high-pressure behaviour of oxygen in metallic matrices. Solid State Sci 6:809–814

    Article  CAS  Google Scholar 

  69. Czybulka A, Steinberg G, Schuster HU (1979) Darstellung und Struktur ternärer Silizide und Germanide des Lithiums mit den Seltenen Erden Y und Gd im Fe2P-Typ. Z Naturforsch B 34:1057–1058

    Google Scholar 

  70. Carrillo-Cabrera W, Somer M, Peters EM, Peters K, von Schnering HG (1996) Crystal structure of sodium barium phosphide NaBaP. Z Kristallogr 211:191

    Article  CAS  Google Scholar 

  71. Schönberg N (1954) The tungsten carbide and nickel arsenide structures. Acta Metall 2:427–432

    Article  Google Scholar 

  72. Krypyakevych PI, Kuz'ma YB, Voroshilov YV, Shoemaker CB, Shoemaker D (1971) Crystal structure of NbCoB. Acta Crystallogr B 27:257–261

    Article  Google Scholar 

  73. Toman K (1954) The structure of Ni2Si. Acta Crystallogr 5:329–331

    Article  Google Scholar 

  74. Morosin B, Smith DL (1967) The crystal structure of lithium sodium sulfate. Acta Crystallogr 22:906–910

    Article  CAS  Google Scholar 

  75. Lightfoot P, Pienkowski MC, Bruce PG, Abrahams I (1991) Synthesis and structure of LiCaPO4 by combined X-ray and neutron powder diffraction. J Mater Chem 1:1061–1063

    Article  CAS  Google Scholar 

  76. Liang JK, Xu XT, Chai Z (1988) The phase-diagram of the system LiNaSO4-LiKSO4 and crystallographic parameters and ionic-conductivity of Li2NaK(SO4)2. J Solid State Chem 76:270–275

    Article  CAS  Google Scholar 

  77. Frueh AJ Jr (1961) The use of zone theory in problems of sulfide mineralogy, part III: polymorphism of Ag2Te and Ag2S. Am Mineral 46:654–660

    CAS  Google Scholar 

  78. Okada K, Osaka J (1980) Cesium lithium tungstate. A stuffed h-cristobalite structure. Acta Crystallogr B 36:657–659

    Article  Google Scholar 

  79. Yong-Kwan D, DiSalvo FJ (2007) Synthesis and single crystal structures of ternary phosphides Li4SrP2 and AAeP (A = Li, Na; Ae = Sr, Ba). J Solid State Chem 180:432–439

    Article  CAS  Google Scholar 

  80. Klevtsova RF, Klevtsov PV, Alexandrov KS (1980) Synthesis and crystal-structure of CsLiMoO4. Dokl Akad Nauk SSSR 255:1379–1382

    CAS  Google Scholar 

  81. Klevtsov PV, Perepelitsa AP, Ishchenko VN, Klevtsova RF, Glinskaya LA, Kruglik AI, Aleksandrov KS, Simonov MA (1989) Synthesis and crystal-structural investigations of CsLiCrO4. Sov Phys Crystallogr 32:677–681

    Google Scholar 

  82. Ono S, Brodholt JP, Price GD (2008) First-priciples simulation of high pressure polymorphs in MgAl2O4. Phys Chem Miner 35:381–386

    Article  CAS  Google Scholar 

  83. Levy D, Pavese A, Sani A, Pischedda V (2001) Structure and compressibility of synthetic ZnAl2O4 (gahnite) under high-pressure conditions, from synchrotron X-ray powder diffraction. Phys Chem Miner 28:612–618

    Article  CAS  Google Scholar 

  84. Levy D, Pavese A, Hanfland M (2000) Phase transition of synthetic zinc ferrite spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction. Phys Chem Miner 27:638–644

    Article  CAS  Google Scholar 

  85. Gerward L, Ziang JZ, Olsen JS, Recio JM, Waskowska W (2005) X-ray diffraction at high pressure and high or low temperature using synchrotron radiation. Selected applications in studies of spinel structures. J Alloys Compd 401:11–17

    Article  CAS  Google Scholar 

  86. Errandonea D, Kumar RS, Manjón FJ, Ursaki VV, Rusu EV (2009) Post-spinel transformations and equation of state in ZnGa2O4: determination at high pressure by in situ x-ray diffraction. Phys Rev B 79:024103

    Article  CAS  Google Scholar 

  87. Trömel M (1965) Zur Struktur der Verbindungen vom Sr2PbO4-Typ. Naturwiss 52:492–493

    Article  Google Scholar 

  88. Trömel M (1969) Die Kristallstruktur der Verbindungen vom Sr2PbO4-Typ. Z anorg allg Chem 371:237–247

    Article  Google Scholar 

  89. Weiss R, Faivre R (1959) Preparation et structure de plombates et stannates alcalinoterreux du type A2BO4. C R Acad Sci 248:106–108

    CAS  Google Scholar 

  90. Vegas A, Vallet-Regí M, González-Calbet JM, Alario-Franco MA (1986) The ASnO3 (A = Ca, Sr) perovskites. Acta Crystallogr 42:167–172

    Article  Google Scholar 

  91. Durand B, Diot M, Mollard P (1979) Preparation et characterisation de la varieté ilmenite des stannates de manganese MnSnO3 et de calcium CaSnO3. Annal Chim 4:559–607

    Google Scholar 

  92. Ramos-Gallardo A, Vegas A (1995) The cation array in the bixbyite-type structures. J Solid State Chem 119:131–133

    Article  CAS  Google Scholar 

  93. Prewitt CT, Shannon RD, Rogers DB, Sleight WW (1969) The C rare earth oxide- corundum transition and crystal chemistry of oxides having the corundum structure. Inorg Chem 8:1985–1994

    Article  CAS  Google Scholar 

  94. Eckerlin P, Leicht E, Wölfel E (1961) Die Kristallstruktur von Ca2Sn und Ca2Pb. Z anorg allg Chem 307:145–156

    Article  Google Scholar 

  95. Andrusyak RI, Kotur BY (1991) Phase equilibriums in the Sc-Mn-Ge and Sc-Fe-Ge systems at 870 K. Russ Metall (Engl Transl) 4:204–208

    Google Scholar 

  96. Kuz'ma YV, Teslyuk MY, Gladyshevskii EI (1962) Ternary laves phases in the system Mn-Ni-Ge. J Struct Chem 3:143–145

    Article  Google Scholar 

  97. Fujita Y (1974) Strong paramagnetism in ZrMnCo. J Phys Soc Jpn 37:273

    Article  CAS  Google Scholar 

  98. Tsuzuki K, Ishikawa Y, Watanabe N, Akimoto S (1974) Neutron diffraction and paramagnetic scattering from a high pressure phase of MnGeO3 (ilmenite). J Phys Soc Jpn 37:1242–1247

    Article  CAS  Google Scholar 

  99. Hase W (1984) Neutronographische Bestimmung der Kristallstrukturparameter von Dy2O3, Tm2O3 und α-Mn2O3. Acta Crystallogr B 40:76–82

    Article  Google Scholar 

  100. Moiseev VP, Popova OS (1959) X-ray study of electrolytic deposits of manganese. Russ J Phys Chem 33:344–348

    Google Scholar 

  101. Ohoyama T (1961) X-ray and magnetic studies of manganese-germanium system. J Phys Soc Jpn 16:1995–2002

    Article  CAS  Google Scholar 

  102. Goldschmidt VM (1932) Die Rutilmodifikation der Germanium Dioxyds. Z Phys Chem B 17:172–176

    Google Scholar 

  103. Ott H (1926) Die Strukturen von MnO, MnS, AgF, NiS, SnI4, SrCl2, BaF2, Praezisionsmessungen einiger Alkalihalogenide. Z Kristallogr 63:222–230

    CAS  Google Scholar 

  104. Haines J, Léger JM, Hoyau S (1995) 2nd-order rutile-type to CaCl2-type phase-transition in β-MnO2 at high-pressure. J Phys Chem Solids 56:965–973

    Article  CAS  Google Scholar 

  105. Vegas A, Martínez-Ripoll M (1992) From crystal structure data towards reaction paths in the solid state. Acta Crystallogr B 48:747–752

    Article  Google Scholar 

  106. Brukl C, Nowotny H, Schob O, Benesovsky F (1961) Die Kristallstrukturen von TiSi, Ti(Al, Si)2 und Mo(Al, Si)2. Monatsh Chem 92:781–788

    Article  CAS  Google Scholar 

  107. Rossteutscher W, Schubert K (1965) Strukturuntersuchungen in einigen T(4-5)-B(4-5) Systemen. Z Metallkd 56:813–822

    Google Scholar 

  108. Karpinskii OG, Shamrai VF (1969) Crystal structure of CrB-type ZrSi compound. Russ Met:136–137

    Google Scholar 

  109. Schob O, Parthé E (1965) AB compounds with Sc, Y and rare earth metals. I. Scandium and Yttrium compounds with CrB and CsCl structure. Acta Crystallogr 19:214–224

    Article  CAS  Google Scholar 

  110. Vegas A, Martínez-Cruz LA (1995) A study of the cation arrays in MB2, MB4 MB6 borides. Part II. Cluster formation and bonding aspects. Z Kristallogr 210:581–584

    Article  CAS  Google Scholar 

  111. Novotny H, Kieffer R (1947) Roentgenographische Untersuchungen von Karbidsystemen. Z Metallkd 38:257–265

    Google Scholar 

  112. Traore K, Kappler JP (1979) Study of the variation of the cristalline parameters of solid-solutions of manganese, cobalt, nickel and iron borides, as a function of their composition. Bull Soc Chim Fr 1:419–425

    Google Scholar 

  113. Kanaizuka T (1981) Invar like properties of transition-metal monoborides Mn1-xCrxB and Mn1-xFexB. Mater Res Bull 16:1601–1608

    Article  CAS  Google Scholar 

  114. Kiessling R (1950) The borides of manganese. Acta Chem Scand 4:146–159

    Article  CAS  Google Scholar 

  115. Megaw HD (1946) Crystal structure of double oxides of the perovskite type. Proc Phys Soc London (1946) 58:133–152

    Article  CAS  Google Scholar 

  116. Zachariasen WH (1927) Über die Kristallstruktur von MoSi2 und WSi2. Z Phys Chem 128:39–48

    CAS  Google Scholar 

  117. Jongste JF, Loopstra OB, Janssen GCAM, Radelaar S (1993) Elastic-constants and thermal-expansion coefficient of metastable C49 TiSi2. J Appl Phys 73:2816–2820

    Article  CAS  Google Scholar 

  118. Smith PL, Ortega R, Brennan B (1998) Pseudo-C11b phase formation of titanium disilicide TiSi2 (Fmmm) during the C49 to C54 transition. Mater Res Soc Symp Proc 481:605–610

    Article  CAS  Google Scholar 

  119. Beyers R, Sinclair R (1985) Metastable phase formation in titanium-silicon thin-films. J Appl Phys 57:5240–5245

    Article  CAS  Google Scholar 

  120. Stishov SM, Belov NV (1962) About the crystal structure of a new compact modification of SiO2. Dokl Akad Nauk SSSR 143:951–954

    CAS  Google Scholar 

  121. Parthé E, Nowotny HN, Schmidt H (1955) Strukturuntersuchungen an Siliziden. Monatsh Chem 86:385–396

    Article  Google Scholar 

  122. McMahon MI, Nelmes RJ, Wright NG, Allan DR (1994) Crystal structure studies of II-VI semiconductors using angle-dispersive diffraction techniques with an image-plate detector. AIP Conf Proc 309:633–636

    Article  CAS  Google Scholar 

  123. Duclos SJ, Vohra YK, Ruoff AL (1987) hcp to fcc transition in silicon at 78 GPa and studies to 100 GPa. Phys Rev Lett 58:775–777

    Article  CAS  Google Scholar 

  124. Eckerlin P, Meyer HJ, Wölfel E (1955) Die Kristallstruktur von CaSn and CaGe. Z anorg allg Chem 280:322–328

    Article  Google Scholar 

  125. Reid AF, Ringwood AE (1970) The crystal chemistry of dense M3O4 polymorphs: high pressure Ca2GeO4 of K2NiF4 structure type. J Solid State Chem 1:557–565

    Article  Google Scholar 

  126. Wright AF, Fitch AN, Wright AC (1988) The preparation and structure of the α- and β-quartz polymorphs of beryllium fluoride. J Solid State Chem 73:298–304

    Article  CAS  Google Scholar 

  127. Wondratschek H, Merker L, Schubert K (1964) Beziehungen zwischen der Apatit-Struktur und der Struktur der Verbindungen vom Mn5Si3 (D88)Type. Z Kristallogr 120:393–395

    Google Scholar 

  128. Wondratschek H, Merker L, Schubert K (1964) Beziehungen zwischen der Apatit-Struktur und der Struktur der Verbindungen vom Mn5Si3 (D88)Type. Z Kristallogr 120:478 (erratum correction)

    Google Scholar 

  129. Okada K, Ossaka J (1981) Crystal data and phase transitions of KLiWO4 and KLiMoO4. J Solid State Chem 37:325–327

    Article  CAS  Google Scholar 

  130. Gregoryanz E, Lundegaard LF, McMahon MI, Guillaume C, Nelmes RJ, Mezouar M (2008) Structural diversity of sodium. Science 320:1054–1057

    Article  CAS  Google Scholar 

  131. Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I, Lyakhov MS, AO VM, Prakapenka V (2009) Transparent dense sodium. Nature 458:182–183

    Article  CAS  Google Scholar 

  132. Lundegaard LF, Marqués M, Stinton G, Ackland GJ, Nelmes RJ, McMahon MI (2009) Observation of the oP8 crystal structure in potassium at high pressure. Phys Rev B 80:020101

    Article  CAS  Google Scholar 

  133. Marqués M, Ackland GJ, Lundegaard LF, Stinton G, Nelmes RJ, McMahon MI, Contreras-García J (2009) Potassium under pressure: a pseudobinary ionic compound. Phys Rev Lett 103: 115501(4)

    Google Scholar 

  134. Vegas A, Santamaría-Pérez D, Marqués M, Flórez M, García-Baonza V, Recio JM (2006) Anions in metallic matrices model: application to the aluminium crystal chemistry. Acta Crystallogr B 62:220–227

    Article  CAS  Google Scholar 

  135. Vegas A, Mattesini M (2010) Towards a generalized vision of oxides: disclosing the role of cations and anions in determining unit-cell dimensions. Acta Crystallogr B 66:338–344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am gratefully indebted to Dr Alberto Solana for careful reading of the manuscript and also for his invaluable suggestions that helped to improve this chapter. I also wish to express my thanks to Dr Douglas V. Laurents for his valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Vegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vegas, Á. (2011). Concurrent Pathways in the Phase Transitions of Alloys and Oxides: Towards an Unified Vision of Inorganic Solids. In: Vegas, A. (eds) Inorganic 3D Structures. Structure and Bonding. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2010_38

Download citation

Publish with us

Policies and ethics