Advertisement

Electron Density in Quantum Theory

  • Samuel Fux
  • Markus ReiherEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 147)

Abstract

In this work, we review the theory of the electron density in quantum chemistry and discuss to which extent relativistic effects are recovered by approximate relativistic Hamiltonians. For this purpose, we give an overview on different approximations to the fully relativistic many-electron Hamiltonian. In addition, we present new results, considering correlation effects on the electron density of a transition metal complex.

Keywords

Continuity equation Contact density Conceptual theories Dirac–Coulomb–Breit Density functional theory Douglas–Kroll–Hess Electron density Electron correlation effects Frozen-density embedding Picture change error Relativistic effects ZORA 

Notes

Acknowledgments

This work has been financially supported by ETH Zurich (Grant TH-26 07-3). We are grateful to N. Sablon for providing the dataset of the Fukui function for PbCl2, Bi2H4, and (CH3)2SAuCl, which were used to create Fig. 7.

References

  1. 1.
    Bader R (1990) Atoms in molecules. Clarendon, OxfordGoogle Scholar
  2. 2.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Tafipolsky M, Scherer W, Ofele K, Artus G, Pedersen B, Herrmann WA, McGrady GS (2002) J Am Chem Soc 124:5865–5880Google Scholar
  4. 4.
    Scherer W, Sirsch P, Shorokhov D, Tafipolsky M, McGrady GS, Gullo E (2004) Chem Eur J 9:6057–6070Google Scholar
  5. 5.
    Scherer W, McGrady GS (2004) Angew Chem Int Ed 43:1782–1806Google Scholar
  6. 6.
    Friedrich W, Knipping P, von Laue M (1912) Sitz ber Bayer Akademie d Wiss:303–322Google Scholar
  7. 7.
    Bragg WL (1913) Proc R Soc Lond A89:248–277Google Scholar
  8. 8.
    Dickinson RG, Raymond AL (1923) J Am Chem Soc 45:22–29Google Scholar
  9. 9.
    Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) Nature 181:662–666Google Scholar
  10. 10.
    Koritsanszky TS (2001) Chem Rev 101:1583–1627Google Scholar
  11. 11.
    Hauptman HA, Karle J (1954) Solution of the phase problem. 1. The centrosymmetric crystal. ACA monograph no. 3, WilmingtonGoogle Scholar
  12. 12.
    Hauptman HA, Karle J (1956) Acta Cryst 9:635–651Google Scholar
  13. 13.
    Patterson AL (1934) Phys Rev 46:372–376Google Scholar
  14. 14.
    Patterson AL (1935) Z Krist 90:517–542Google Scholar
  15. 15.
    Gilmore CJ (1996) Acta Cryst A52:561–589Google Scholar
  16. 16.
    Hohenberg P, Kohn W (1964) Phys Rev 136:864–871Google Scholar
  17. 17.
    Kohn W, Sham LJ (1965) Phys Rev 140:1133–1138Google Scholar
  18. 18.
    Thomas LH (1927) Proc Camb Philos Soc 23:542Google Scholar
  19. 19.
    Fermi E (1928) Z Phys 48:73–79Google Scholar
  20. 20.
    Dirac PAM (1928) Proc R Soc Lond A 117:610–624Google Scholar
  21. 21.
    Dirac PAM (1928) Proc R Soc Lond A 118:351–361Google Scholar
  22. 22.
    Reiher M, Wolf A (2009) Relativistic quantum chemistry. Wiley-VCH, WeinheimGoogle Scholar
  23. 23.
    Born M (1926) Z Phys 37:863–867Google Scholar
  24. 24.
    Born M, Oppenheimer R (1927) Ann Phys (Berlin) 389:457–484Google Scholar
  25. 25.
    Eckart C (1935) Phys Rev 47:552–558Google Scholar
  26. 26.
    Born M, Huang K (1956) Dynamical theory of crystal lattices. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, New YorkGoogle Scholar
  28. 28.
    Gaunt JA (1929) Proc R Soc Lond A 122:513–532Google Scholar
  29. 29.
    Gaunt JA (1929) Philos Trans R Soc (Lond) A288:151–196Google Scholar
  30. 30.
    Brown GE, Ravenhall DG (1951) Proc R Soc Lond A 208:552–559Google Scholar
  31. 31.
    Hess BA (1986) Phys Rev A 33:3742–3748Google Scholar
  32. 32.
    Reiher M, Wolf A (2004) J Chem Phys 121:2037–2047Google Scholar
  33. 33.
    Reiher M, Wolf A (2004) J Chem Phys 121:10945–10956Google Scholar
  34. 34.
    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610Google Scholar
  35. 35.
    Barysz M, Sadlej AJ, Snijders JG (1997) Int J Quantum Chem 65:225–239Google Scholar
  36. 36.
    Kedziera D, Barysz M (2003) J Chem Phys 116:2696–2704Google Scholar
  37. 37.
    Kutzelnigg W, Liu WJ (2005) J Chem Phys 123:241102Google Scholar
  38. 38.
    Filatov M (2006) J Chem Phys 125:107101Google Scholar
  39. 39.
    Ilias M, Saue T (2007) J Chem Phys 126:064102Google Scholar
  40. 40.
    Sikkerna J, Visscher L, Saue T (2009) J Chem Phys 131:124116Google Scholar
  41. 41.
    Aquilante F, Vico LD, Ferre N, Ghigo G, Malmqvist P-A, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos B-O, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247Google Scholar
  42. 42.
    Amsterdam Density Functional program. http://www.scm.com. Theoretical Chemistry, Vrije Universiteit, Amsterdam
  43. 43.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967Google Scholar
  44. 44.
    Douglas M, Kroll NM (1974) Ann Phys 1:82, 89–155Google Scholar
  45. 45.
    Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215–9226Google Scholar
  46. 46.
    Reiher M (2006) Theor Chem Acc 116:241–252Google Scholar
  47. 47.
    Wolf A, Reiher M (2006) J Chem Phys 124:064102Google Scholar
  48. 48.
    Wolf A, Reiher M (2006) J Chem Phys 124:064103Google Scholar
  49. 49.
    Reiher M, Wolf A (2007) Phys Lett A 360:603–607Google Scholar
  50. 50.
    Baerends EJ, Schwarz WHE, Schwerdtfeger P, Snijders JG (1990) J Phys B At Mol Opt Phys 23:3225–3240Google Scholar
  51. 51.
    Kello V, Sadlej AJ (1998) Int J Quantum Chem 68:159–174Google Scholar
  52. 52.
    Bučinský L, Biskupič S, Jayatilaka D (2010) J Chem Phys 133:174125Google Scholar
  53. 53.
    Heully JL, Lindgren I, Lindroth E, Lundqvist S, Mårtensson-Pendrill AM (1986) J Phys B At Mol Phys 19:2799–2815Google Scholar
  54. 54.
    Durand P (1986) C R Acad Sci II 303:119Google Scholar
  55. 55.
    Chang C, Pelissier M, Durand P (1986) Phys Scr 34:394–404Google Scholar
  56. 56.
    van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792Google Scholar
  57. 57.
    van Leeuwen R, van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:1272–1281Google Scholar
  58. 58.
    Sadlej AJ, Snijders JG, van Lenthe E, Baerends EJ (1995) J Chem Phys 102:1758–1766Google Scholar
  59. 59.
    van Leeuwen R, van Lenthe E, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57:1272–1281Google Scholar
  60. 60.
    Foldy LL, Wouthuysen SA (1950) Phys Rev 78:29–36Google Scholar
  61. 61.
    Dyall KG, van Lenthe E (1999) J Chem Phys 111:1366–1372Google Scholar
  62. 62.
    Slater JC (1929) Phys Rev 34:1293–1322Google Scholar
  63. 63.
    Condon EU (1930) Phys Rev 36:1121–1133Google Scholar
  64. 64.
    Eickerling G, Mastalerz R, Herz V, Scherer W, Himmel H-J, Reiher M (2007) J Chem Theory Comput 3(6):2182–2197Google Scholar
  65. 65.
    Reiher M (2007) Faraday Discuss 135:97–124Google Scholar
  66. 66.
    Mastalerz R, Lindh R, Reiher M (2008) Chem Phys Lett 465:157–164Google Scholar
  67. 67.
    Rajagopal AK, Callaway J (1973) Phys Rev B 7:1912–1919Google Scholar
  68. 68.
    Hartree DR (1929) Proc Camb Philos Soc 25:225–236Google Scholar
  69. 69.
    White HE (1931) Phys Rev 38:512–520Google Scholar
  70. 70.
    White HE (1934) Introduction to atomic spectra. McGraw-Hill, New YorkGoogle Scholar
  71. 71.
    Burke VM, Grant IP (1967) Proc Phys Soc 90:297–314Google Scholar
  72. 72.
    Trautwein A, Harris FE, Freeman AJ, Desclaux JP (1975) Phys Rev B 11:4101–4105Google Scholar
  73. 73.
    Mallow JV, Freeman AJ, Desclaux JP (1975) Bull Am Phys Soc 20:293Google Scholar
  74. 74.
    Mallow JV, Freeman AJ, Desclaux JP (1976) Phys Rev B 13:1884–1892Google Scholar
  75. 75.
    Pyykkö P, Desclaux J-P (1979) Acc Chem Res 12:276–281Google Scholar
  76. 76.
    Ros P, Snijders JG, Ziegler T (1980) Chem Phys Lett 69:297–300Google Scholar
  77. 77.
    Autschbach J, Schwarz WHE (2000) Theor Chem Acc 104:82–88Google Scholar
  78. 78.
    van Wüllen C, Michauk C (2005) J Chem Phys 123:204113Google Scholar
  79. 79.
    Bader RFW, Chandra AK (1968) Can J Chem 46:953–966Google Scholar
  80. 80.
    Baerends EJ, Gritsenko OV, van Leeuwen R (1996) Electron correlation and the structure of the exchange–correlation potential and the correlation energy density in density functional theory. In: Tsipis CA (ed) New methods in quantum theory. Kluwer Academic, DordrechtGoogle Scholar
  81. 81.
    Smith VH (1977) Phys Scr 15:147–162Google Scholar
  82. 82.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1983) Mol Phys 49:65–89Google Scholar
  83. 83.
    Ritchie JP, King HF, Young WS (1986) J Chem Phys 85:5175–5182Google Scholar
  84. 84.
    Moszynski R, Szalewicz K (1987) J Phys B 20:4347–4364Google Scholar
  85. 85.
    Gatti C, MacDougall PJ, Bader RFW (1988) J Chem Phys 88:3792–3804Google Scholar
  86. 86.
    Gauss J (1991) J Mol Struct 234:95–126Google Scholar
  87. 87.
    He Y, Gräfenstein J, Kraka E, Cremer D (2000) Mol Struct 98:1639–1658Google Scholar
  88. 88.
    Cremer D (2001) Mol Phys 99:1899–1940Google Scholar
  89. 89.
    Jankowski K, Nowakowski K, Grabowski I, Wasilewski J (2009) J Chem Phys 130:164102Google Scholar
  90. 90.
    Jankowski K, Nowakowski K, Grabowski I, Wasilewski J (2010) Theor Chem Acc 125:433–444Google Scholar
  91. 91.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211Google Scholar
  92. 92.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789Google Scholar
  93. 93.
    Bartlett RJ, Grabowski I, Hirata S, Ivanov S (2005) J Chem Phys 122:034104Google Scholar
  94. 94.
    Boguslawski K, Jacob CR, Reiher M (2010, submitted)Google Scholar
  95. 95.
    Ehrenfest P (1922) Nature 109:745–746Google Scholar
  96. 96.
    Bohr N (1922) Nature 109:746Google Scholar
  97. 97.
    Rosenthal JE, Breit G (1932) Phys Rev 41:459–470Google Scholar
  98. 98.
    Breit G (1958) Rev Mod Phys 30:3408–3411Google Scholar
  99. 99.
    Serafin MM, Peebles SA, Dewberry CT, Etchison KC, Grubbs GS II, Powoski RA, Cooke SA (2004) Chem Phys 298:33–37Google Scholar
  100. 100.
    Serafin MM, Peebles SA, Dewberry CT, Etchison KC, Grubbs GS II, Powoski RA, Cooke SA (2007) Chem Phys Lett 449:33–37Google Scholar
  101. 101.
    Kurian R, Filatov M (2010) Phys Chem Chem Phys 12:2758–2762Google Scholar
  102. 102.
    Kistner OC, Sunyar AW (1960) Phys Rev Lett 4:412–415Google Scholar
  103. 103.
    Shirley DA (1964) Rev Mod Phys 36:339–351Google Scholar
  104. 104.
    Filatov M (2009) Coord Chem Rev 253:594–605Google Scholar
  105. 105.
    Andrae D, Reiher M, Hinze J (2000) Phys Chem Lett 320:457–468Google Scholar
  106. 106.
    Kato T (1957) Commun Pure Appl Math 10:151–177Google Scholar
  107. 107.
    Andrae D (2000) Phys Rep 336:414–525Google Scholar
  108. 108.
    Fricke B, Waber JT (1972) Phys Rev B 5:3445–3449Google Scholar
  109. 109.
    Mastalerz R, Widmark P-O, Roos BO, Lindh R, Reiher M (2010) J Chem Phys 133:144111Google Scholar
  110. 110.
    Visscher L, Dyall KG (1997) At Data Nucl Data 67:207–224Google Scholar
  111. 111.
    Hofstadter R (1956) Rev Mod Chem 28:214–254Google Scholar
  112. 112.
    Svane A, Antoncik E (1987) Phys Rev B 35:4611–4624Google Scholar
  113. 113.
    Knecht S, Fux S, van Meer R, Visscher L, Reiher M, Saue T (2011) Theor Chem Acc (submitted)Google Scholar
  114. 114.
    Filatov M (2007) J Chem Phys 127:084101Google Scholar
  115. 115.
    Hinze J, Jaffe HH (1962) J Am Chem Soc 84:540–546Google Scholar
  116. 116.
    Hinze J, Whitehead MA, Jaffe HH (1963) J Am Chem Soc 85:148–154Google Scholar
  117. 117.
    Hinze J, Jaffe HH (1963) Can J Chem 41:1315–1328Google Scholar
  118. 118.
    Hinze J, Jaffe HH (1963) J Phys Chem 67:1501–1506Google Scholar
  119. 119.
    Pearson RG (1963) J Am Chem Soc 85:3533–3539Google Scholar
  120. 120.
    Pearson RG (1966) Science 151:172–177Google Scholar
  121. 121.
    Pearson RG (1968) J Chem Educ 45:581–587Google Scholar
  122. 122.
    Pearson RG (1968) J Chem Educ 45:643–648Google Scholar
  123. 123.
    Pearson RG (1997) Chemical hardness. Wiley-VCH, New YorkGoogle Scholar
  124. 124.
    Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725Google Scholar
  125. 125.
    Fukui K, Yonezawa T, Nagata C, Shingu H (1954) J Chem Phys 22:1433–1442Google Scholar
  126. 126.
    Fukui K, Yonezawa T, Nagata C (1957) J Chem Phys 27:1247–1259Google Scholar
  127. 127.
    Houk KN, Sims J, Duke RE, Strozier RW, George JK (1973) J Am Chem Soc 95:7287–7301Google Scholar
  128. 128.
    Houk KN (1975) Acc Chem Res 8:361–369Google Scholar
  129. 129.
    Fukui K (1982) Angew Chem Int Ed 21:801–809Google Scholar
  130. 130.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807Google Scholar
  131. 131.
    Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103:1793–1873Google Scholar
  132. 132.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520–534Google Scholar
  133. 133.
    Sablon N, Proft FD, Ayers PW, Geerlings P (2007) J Chem Phys 126:224108Google Scholar
  134. 134.
    Sablon N, Proft FD, Geerlings P (2009) J Chem Theory Comput 5:1245–1253Google Scholar
  135. 135.
    Yang W, Parr RG (1985) Proc Natl Acad Sci USA 82:6723–6726Google Scholar
  136. 136.
    De HS, Krishnamurty S, Pal S (2009) J Phys Chem C 113:7101–7106Google Scholar
  137. 137.
    Sablon N, Mastalerz R, de Proft F, Geerlings P, Reiher M (2010) Theor Chem Acc 127:195–202Google Scholar
  138. 138.
    Popelier P (2000) Atoms in molecules: an introduction. Pearson Education, EssexGoogle Scholar
  139. 139.
    Cioslowski J, Karwowski J (2001) Quantum-mechanical theory of atoms in molecules: a relativistic formulation. In: Carbó-Dorca R, Gironés X, Mezey PG (eds) Fundamentals of molecular similarity. Kluwer Academic, New YorkGoogle Scholar
  140. 140.
    Gatti C, Saunders VR, Roetti C (1994) J Chem Phys 101:10686–10696Google Scholar
  141. 141.
    Mladenovic M, Arnone M, Fink RF, Engels B (2009) J Phys Chem B 113:5072–5082Google Scholar
  142. 142.
    Engels B, Schmidt TC, Gatti C, Schirmeister T, Fink RF (2010) Challenging problems in charge density determination: polar bonds and influence of the environment. In: Stalke D (ed) Electron density and chemical bonding. Springer-Verlag GmbH, HeidelbergGoogle Scholar
  143. 143.
    Govind N, Wang YA, da Silva AJR, Carter EA (1998) Chem Phys Lett 295:129–134Google Scholar
  144. 144.
    Govind N, Wang YA, Carter EA (1999) J Chem Phys 110:7677–7688Google Scholar
  145. 145.
    Klüener T, Govind N, Wang YA, Carter EA (2001) Phys Rev Lett 86:5954–5957Google Scholar
  146. 146.
    Klüener T, Govind N, Wang YA, Carter EA (2002) J Chem Phys 116:42–54Google Scholar
  147. 147.
    Huang P, Carter EA (2006) J Chem Phys 125:084102Google Scholar
  148. 148.
    Iannuzzi M, Kirchner B, Hutter J (2006) Chem Phys Lett 421:16–20Google Scholar
  149. 149.
    Cortona P (1991) Phys Rev B 44:8454Google Scholar
  150. 150.
    Wesolowski TA, Warshel A (1993) J Phys Chem 97:8050Google Scholar
  151. 151.
    Wesolowski TA, Weber J (1996) Chem Phys Lett 248:71–76Google Scholar
  152. 152.
    Wesolowski TA, Chermette H, Weber J (1996) J Chem Phys 105:9182–9190Google Scholar
  153. 153.
    Wesolowski TA (1997) J Chem Phys 106:8516–8526Google Scholar
  154. 154.
    Wesolowski TA, Ellinger Y, Weber J (1998) J Chem Phys 108:6078Google Scholar
  155. 155.
    Kevorkyants R, Dulak M, Wesolowski TA (2006) J Chem Phys 124:024104Google Scholar
  156. 156.
    Neugebauer J (2008) J Phys Chem B 112:2207–2217Google Scholar
  157. 157.
    Dulak M, Kaminski JW, Wesolowski TA (2007) J Chem Theory Comput 3:735–745Google Scholar
  158. 158.
    Neugebauer J, Louwerse MJ, Baerends EJ, Wesolowski TA (2005) J Chem Phys 122:094115Google Scholar
  159. 159.
    Neugebauer J, Jacob CR, Wesolowski TA, Baerends EJ (2005) J Phys Chem A 109:7805–7814Google Scholar
  160. 160.
    Jacob CR, Neugebauer J, Jensen L, Visscher L (2006) Phys Chem Chem Phys 8:2349–2359Google Scholar
  161. 161.
    Neugebauer J (2009) J Chem Phys 131:084104Google Scholar
  162. 162.
    Jacob CR, Wesolowski TA, Visscher L (2005) J Chem Phys 123:174104Google Scholar
  163. 163.
    Dulak M, Wesolowski TA (2006) J Chem Phys 124:164101Google Scholar
  164. 164.
    Jacob CR, Beyhan M, Visscher L (2007) J Chem Phys 126:234116Google Scholar
  165. 165.
    Jacob CR, Visscher L (2008) J Chem Phys 128:155102Google Scholar
  166. 166.
    Wesolowski TA (1999) Chem Phys Lett 311:87–92Google Scholar
  167. 167.
    Neugebauer J, Louwerse MJ, Belanzoni P, Wesolowski TA, Baerends EJ (2005) J Chem Phys 123:114101Google Scholar
  168. 168.
    Wesolowski TA (2006) One-electron equations for embedded electron density: challenge for theory and practical payoffs in multi-level modeling of complex polyatomic systems. In: Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 10. World Scientific, SingaporeGoogle Scholar
  169. 169.
    Jacob CR, Visscher L (2010) Towards the description of covalent bonds in subsystem density-functional theory. In: Wesolowski TA, Wang YA (eds) Recent advances in orbital-free density functional theory. World Scientific, Singapore (to appear)Google Scholar
  170. 170.
    Neugebauer J (2009) ChemPhysChem 10:3148–3173Google Scholar
  171. 171.
    Neugebauer J (2010) Phys Rep 489:1–87Google Scholar
  172. 172.
    Neugebauer J (2010) Orbital-free embedding calculations of electronic spectra. In: Wesolowski TA, Wang YA (eds) Recent advances in orbital-free density functional theory. World Scientific, Singapore (to appear)Google Scholar
  173. 173.
    Stefanovich EV, Truong TN (1996) J Chem Phys 104:2946–2955Google Scholar
  174. 174.
    Kiewisch K, Eickerling G, Reiher M, Neugebauer J (2008) J Chem Phys 128:044114Google Scholar
  175. 175.
    Fux S, Kiewisch K, Jacob CR, Neugebauer J, Reiher M (2008) Chem Phys Lett 461:353–359Google Scholar
  176. 176.
    Wang YA, Carter EA (2000) Orbital-free kinetic-energy density functional theory. In: Schwartz SD (ed) Theoretical methods in condensed phase chemistry. Kluwer, DordrechtGoogle Scholar
  177. 177.
    Werner H-J et al (2009) MOLPRO, version 2009.1, a package of ab initio programs. http://www.molpro.net
  178. 178.
    Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) J Phys Chem A 109:6575–6579Google Scholar
  179. 179.
    Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) Chem Phys Lett 409:295–299Google Scholar
  180. 180.
    Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O, Borin AC (2008) J Phys Chem A 112:11431–11435Google Scholar
  181. 181.
    Becke AD (1988) Phys Rev A 38:3098–3100Google Scholar
  182. 182.
    Perdew JP (1986) Phys Rev B 33:8822–8824Google Scholar
  183. 183.
    Wolfram Research, Inc (2008) Mathematica version 6.0. Wolfram Research, Inc, Champaign, ILGoogle Scholar
  184. 184.
    Ahlrichs R, Bär M, Häser M, Horn H, Kömel C (1989) Chem Phys Lett 162:165–169Google Scholar
  185. 185.
    Ahlrichs R et al. Turbomole. http://www.cosmologic.de/turbomole.html
  186. 186.
    Conradie J, Ghosh A (2007) J Phys Chem B 111:12621–12624Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratorium für Physikalische ChemieETH ZurichZurichSwitzerland

Personalised recommendations