Skip to main content

Challenging Problems in Charge Density Determination: Polar Bonds and Influence of the Environment

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 147))

Abstract

The review focuses on the influence of environments on electron densities (ED) and their Laplacians. This is of interest for many applications which uses EDs measured at hand of crystals of a given ligand to predict its pharmaceutical properties. This comprises for example the questions if the ligand fits into the active center of an enzyme and how strong it binds to this active side. This widely used approximation strongly rely on the assumption that the active side of the enzyme influences the ED of the ligand the same way the crystal environment does. This is not obvious since enzymes represent systems made to catalyze reactions. So one could assume that the active sides influence the EDs of ligands in a special way to prepare them for a given reaction. The review shows that this is indeed the case for E64c. Its inhibition properties result since it reacts with cathepsin B and forms a covalently bonded cathepsin B–E64c complex. It clearly comes out that the reaction only takes place since the ED of the ligand is influenced in a way which is not found in the respective crystals. Nevertheless, the review also shows that the above mentioned approximation holds for AMCHA which serves as a model compound for reversible inhibitors. In the last part the review shows in detail that the source function can be used to study the influence of the environment in more detail. In the first part the review summarizes investigations on the reliability of pure theoretical approaches to ED and its Laplacians.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3B):B864–B871

    Google Scholar 

  2. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133–1138

    Google Scholar 

  3. Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, Oxford

    Google Scholar 

  4. Tsirelson VG, Ozerov RP (1996) Electron density and bonding in crystals. IOP Publishing, Bristol

    Google Scholar 

  5. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Clarendon, New York

    Google Scholar 

  6. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101(6):1583–1627. doi:10.1021/Cr990112c

    CAS  Google Scholar 

  7. Koch W, Holthausen MC (1999) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim

    Google Scholar 

  8. Ernzerhof M, Perdew JP, Burke K (1996) Density functionals: where do they come from, why do they work? In: Density functional theory I, vol 180. Topics in current chemistry. Springer, Berlin 33, pp 1–30

    Google Scholar 

  9. Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  10. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, Weinheim

    Google Scholar 

  11. Shaik SS, Hilberty PC (2007) The chemist’s guide to valence bond theory. Wiley, Hoboken, NJ

    Google Scholar 

  12. Bagus PS, Hermann K, Bauschlicher CW (1984) A new analysis of charge-transfer and polarization for ligand-metal bonding – model studies of Al4co and Al4nh3. J Chem Phys 80(9):4378–4386

    CAS  Google Scholar 

  13. Mulliken RS (1955) Electronic population analysis on Lcao-Mo molecular wave functions. 1. J Chem Phys 23(10):1833–1840

    CAS  Google Scholar 

  14. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926

    CAS  Google Scholar 

  15. Debye P (1915) Zerstreuung von Röntgenstrahlen. Annalen der Physik 351(6):809–823. doi:10.1002/andp.19153510606

    Google Scholar 

  16. Coppens P (2005) Charge densities come of age. Angew Chem Int Ed 44(42):6810–6811. doi:10.1002/anie.200501734

    CAS  Google Scholar 

  17. Leusser D, Henn J, Kocher N, Engels B, Stalke D (2004) S=N versus S+-N-: an experimental and theoretical charge density study. J Am Chem Soc 126(6):1781–1793. doi:10.1021/Ja038941+

    CAS  Google Scholar 

  18. Kocher N, Henn J, Gostevskii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) Si–E (E = N, O, F) bonding in a hexacoordinated silicon complex: new facts from experimental and theoretical charge density studies. J Am Chem Soc 126(17):5563–5568. doi:10.1021/Ja038459r

    CAS  Google Scholar 

  19. Hibbs DE, Austin-Woods CJ, Platts JA, Overgaard J, Turner P (2003) Experimental and theoretical charge density study of the neurotransmitter thurine. Chem Eur J 9(5):1075–1084

    CAS  Google Scholar 

  20. Spackman MA, Munshi P, Dittrich B (2007) Dipole moment enhancement in molecular crystals from X-ray diffraction data. Chemphyschem 8(14):2051–2063. doi:10.1002/cphc.200700339

    CAS  Google Scholar 

  21. Lecomte C, Souhassou M, Pillet S (2003) Topology of experimental charge density: a tool for understanding atomic interactions. J Mol Struct 647(1–3):53–64. doi:10.1016/s0022-2860(02)00524-0

    Google Scholar 

  22. Jelsch C, Guillot B, Lagoutte A, Lecomte C (2005) Advances in protein and small-molecule charge-density refinement methods using MoPro. J Appl Crystallogr 38:38–54. doi:10.1107/S0021889804025518

    Google Scholar 

  23. Jelsch C, Teeter MM, Lamzin V, Pichon-Pesme V, Blessing RH, Lecomte C (2000) Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. Proc Natl Acad Sci USA 97(7):3171–3176

    CAS  Google Scholar 

  24. Luger P (2007) Fast electron density methods in the life sciences – a routine application in the future? Org Biomol Chem 5(16):2529–2540. doi:10.1039/B706235d

    CAS  Google Scholar 

  25. Cachau R, Howard E, Barth P, Mitschler A, Chevrier B, Lamour V, Joachimiak A, Sanishvili R, Van Zandt M, Sibley E, Moras D, Podjarny A (2000) Model of the catalytic mechanism of human aldose reductase based on quantum chemical calculations. J Phys IV 10(P10):3–13

    Google Scholar 

  26. Flaig R, Koritsanszky T, Janczak J, Krane HG, Morgenroth W, Luger P (1999) Fast experiments for charge-density determination: topological analysis and electrostatic potential of the amino acids L-Asn, DL-Glu, DL-Ser, and L-Thr. Angew Chem Int Ed 38(10):1397–1400

    CAS  Google Scholar 

  27. Li X, Wu G, Abramov YA, Volkov AV, Coppens P (2002) Application of charge density methods to a protein model compound: calculation of Coulombic intermolecular interaction energies from the experimental charge density. Proc Natl Acad Sci USA 99(19):12132–12137. doi:10.1073/pnas.192438999

    CAS  Google Scholar 

  28. Flaig R, Koritsanszky T, Zobel D, Luger P (1998) Topological analysis of the experimental electron densities of amino acids. 1. d, l-aspartic acid at 20 K. J Am Chem Soc 120(10):2227–2238

    CAS  Google Scholar 

  29. Zhurova EA, Zhurov VV, Chopra D, Stash AI, Pinkerton AA (2009) 17 Alpha-estradiol center dot 1/2 H2O: super-structural ordering, electronic properties, chemical bonding, and biological activity in comparison with other estrogens. J Am Chem Soc 131(47):17260–17269. doi:10.1021/Ja906057z

    CAS  Google Scholar 

  30. Hansen NK, Coppens P (1978) Electron population analysis of accurate diffraction data. 6. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 34(Nov):909–921

    Google Scholar 

  31. Volkov A, Abramov Y, Coppens P, Gatti C (2000) On the origin of topological differences between experimental and theoretical crystal charge densities. Acta Crystallogr A 56:332–339

    Google Scholar 

  32. Volkov A, Coppens P (2001) Critical examination of the radial functions in the Hansen–Coppens multipole model through topological analysis of primary and refined theoretical densities. Acta Crystallogr A 57:395–405

    CAS  Google Scholar 

  33. Koritsanszky T, Volkov A, Coppens P (2002) Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism. Acta Crystallogr A 58:464–472. doi:10.1107/s0108767302010991

    Google Scholar 

  34. Zuo JM, Kim M, O’Keeffe M, Spence JCH (1999) Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O. Nature 401(6748):49–52

    CAS  Google Scholar 

  35. Wang SG, Schwarz WHE (2000) Final comment on the discussions of “The case of cuprite”. Angew Chem Int Ed 39(21):3794–3796

    Google Scholar 

  36. Schwarz WHE (2006) Measuring orbitals: provocation or reality? Angew Chem Int Ed 45(10):1508–1517. doi:10.1002/anie.200501333

    CAS  Google Scholar 

  37. Hibbs DE, Overgaard J, Platts JA, Waller MP, Hursthouse MB (2004) Experimental and theoretical charge density studies of tetrafluorophthalonitrile and tetrafluoroisophthalonitrile. J Phys Chem B 108(11):3663–3672. doi:10.1021/Jp0377001

    CAS  Google Scholar 

  38. Flaig R, Koritsanszky T, Dittrich B, Wagner A, Luger P (2002) Intra- and intermolecular topological properties of amino acids: a comparative study of experimental and theoretical results. J Am Chem Soc 124(13):3407–3417. doi:10.1021/Ja011492y

    CAS  Google Scholar 

  39. Overgaard J, Waller MP, Platts JA, Hibbs DE (2003) Influence of crystal effects on molecular charge densities in a study of 9-ethynyl-9-fluorenol. J Phys Chem A 107(50):11201–11208. doi:10.1021/jp036269x

    CAS  Google Scholar 

  40. Arnold WD, Sanders LK, McMahon MT, Volkov RV, Wu G, Coppens P, Wilson SR, Godbout N, Oldfield E (2000) Experimental, Hartree–Fock, and density functional theory investigations of the charge density, dipole moment, electrostatic potential, and electric field gradients in l-asparagine monohydrate. J Am Chem Soc 122(19):4708–4717

    CAS  Google Scholar 

  41. Wagner A, Flaig R, Zobel D, Dittrich B, Bombicz P, Strumpel M, Luger P, Koritsanszky T, Krane HG (2002) Structure and charge density of a C-60-fullerene derivative based on a high resolution synchrotron diffraction experiment at 100 K. J Phys Chem A 106(28):6581–6590. doi:10.1021/jp0145199

    CAS  Google Scholar 

  42. Tafipolsky M, Scherer W, Ofele K, Artus G, Pedersen B, Herrmann WA, McGrady GS (2002) Electron delocalization in acyclic and N-heterocyclic carbenes and their complexes: a combined experimental and theoretical charge-density study. J Am Chem Soc 124(20):5865–5880. doi:10.1021/Ja011761k

    CAS  Google Scholar 

  43. Ponec R, Gatti C (2009) Do the structural changes defined by the electron density topology necessarily affect the picture of the bonding? Inorg Chem 48(23):11024–11031. doi:10.1021/Ic901197b and references herein

    Google Scholar 

  44. Gatti C (2010) The source function descriptor as a tool to extract chemical information from theoretical and experimental electron densities. Structure and bonding. Springer

    Google Scholar 

  45. Peres N, Boukhris A, Souhassou M, Gavoille G, Lecomte C (1999) Electron density in ammonium dihydrogen phosphate: non-uniqueness of the multipolar model in simple inorganic structures. Acta Crystallogr A 55:1038–1048

    Google Scholar 

  46. Gatti C (2005) Chemical bonding in crystals: new directions. Z Kristallogr 220(5–6):399–457

    CAS  Google Scholar 

  47. Bertini L, Cargnoni F, Gatti C (2007) Chemical insight into electron density and wave functions: software developments and applications to crystals, molecular complexes and materials science. Theor Chem Acc 117(5–6):847–884. doi:10.1007/s00214-006-0208-z

    CAS  Google Scholar 

  48. Podjarny A, Howard E, Mitschler A, Chevrier B, Lecomte C, Guillot B, Pichon-Pesme V, Jelsch C (2002) X-ray crystallography at subatomic resolution. Europhys News 33(4):113–117

    CAS  Google Scholar 

  49. Schmidt A, Lamzin VS (2002) Veni, vidi, vici – atomic resolution unravelling the mysteries of protein function. Curr Opin Struct Biol 12(6):698–703

    CAS  Google Scholar 

  50. Henn J, Ilge D, Leusser D, Stalke D, Engels B (2004) On the accuracy of theoretically and experimentally determined electron densities of polar bonds. J Phys Chem A 108(43):9442–9452. doi:10.1021/Jp047840a

    CAS  Google Scholar 

  51. Gatti C, MacDougall PJ, Bader RFW (1988) Effect of electron correlation on the topological properties of molecular charge-distributions. J Chem Phys 88(6):3792–3804

    CAS  Google Scholar 

  52. Boyd RJ, Ugalde JM (1992) Computational chemistry: structure, interactions and reactivity. Elsevier, Amsterdam

    Google Scholar 

  53. Wang J, Shi Z, Boyd RJ, Gonzalez CA (1994) A comparative-study of electron-densities in carbon-monoxide calculated from conventional ab-initio and density-functional methods. J Phys Chem 98(28):6988–6994

    CAS  Google Scholar 

  54. Boyd RJ, Wang J, Eriksson LA (1995) Recent advances in density functional methods. World Scientific, Singapore

    Google Scholar 

  55. Jayatilaka D, Dittrich B (2008) X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Acta Crystallogr A 64(3):383–393. doi:10.1107/s0108767308005709

    Google Scholar 

  56. Cheeseman JR, Carroll MT, Bader RFW (1988) The mechanics of hydrogen-bond formation in conjugated systems. Chem Phys Lett 143(5):450–458

    CAS  Google Scholar 

  57. Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron-density and energy. Croat Chem Acta 57(6):1259–1281

    Google Scholar 

  58. Ehrlich P (1913) Chemotherapeutics: scientific principles, methods and results. Lancet 182:445–451

    Google Scholar 

  59. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44(2):98–104

    CAS  Google Scholar 

  60. Koshland DE (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed 33(23–24):2375–2378

    Google Scholar 

  61. Schmuck C, Engels B, Schirmeister T, Fink R (2008) Chemie fuer Mediziner. Pearson, Muenchen

    Google Scholar 

  62. Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry. WH Freeman, New York

    Google Scholar 

  63. Schmidt A, Lamzin VS (2007) From atoms to proteins. Cell Mol Life Sci 64(15):1959–1969. doi:10.1007/s00018-007-7195-7

    CAS  Google Scholar 

  64. Cachau RE, Podjarny AD (2005) High-resolution crystallography and drug design. J Mol Recognit 18(3):196–202. doi:Doi 10.1002/Jmr.738

    CAS  Google Scholar 

  65. Howard EI, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Van Zandt M, Sibley E, Bon C, Moras D, Schneider TR, Joachimiak A, Podjarny A (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 angstrom. Proteins 55(4):792–804

    CAS  Google Scholar 

  66. Muzet N, Guillot B, Jelsch C, Howard E, Lecomte C (2003) Electrostatic complementarity in an aldose reductase complex from ultra-high-resolution crystallography and first-principles calculations. Proc Natl Acad Sci USA 100(15):8742–8747. doi:10.1073/pnas.1432955100

    CAS  Google Scholar 

  67. Lamour V, Barth P, Rogniaux H, Poterszman A, Howard E, Mitschler A, Van Dorsselaer A, Podjarny A, Motas D (1999) Production of crystals of human aldose reductase with very high resolution diffraction. Acta Crystallogr D 55:721–723

    CAS  Google Scholar 

  68. Grabowsky S, Pfeuffer T, Morgenroth W, Paulmann C, Schirmeister T, Luger P (2008) A comparative study on the experimentally derived electron densities of three protease inhibitor model compounds. Org Biomol Chem 6(13):2295–2307. doi:10.1039/B802831a

    CAS  Google Scholar 

  69. Grabowsky S, Pfeuffer T, Checinska L, Weber M, Morgenroth W, Luger P, Schirmeister T (2007) Electron-density determination of electrophilic building blocks as model compounds for protease inhibitors. Eur J Org Chem (17):2759–2768. doi:10.1002/ejoc.200601074

    Google Scholar 

  70. Ghermani NE, Spasojevic-de Bire A, Bouhmaida N, Ouharzoune S, Bouligand J, Layre A, Gref R, Couvreur P (2004) Molecular reactivity of busulfan through its experimental electrostatic properties in the solid state. Pharm Res 21(4):598–607

    CAS  Google Scholar 

  71. Wagner A, Flaig R, Dittrich B, Schmidt H, Koritsanszky T, Luger P (2004) Charge density and experimental electrostatic potentials of two penicillin derivatives. Chem Eur J 10(12):2977–2982. doi:10.1002/chem.200305627

    CAS  Google Scholar 

  72. Flaig R, Koritsanszky T, Soyka R, Haming L, Luger P (2001) Electronic insight into an antithrombotic agent by high-resolution X-ray crystallography. Angew Chem Int Ed 40(2):355–359

    CAS  Google Scholar 

  73. Klebe G (1994) The use of composite crystal-field environments in molecular recognition and the de-novo design of protein ligands. J Mol Biol 237(2):212–235

    CAS  Google Scholar 

  74. Klebe G (2008) Structure correlation and ligand/receptor interactions. Structure correlation. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  75. Velec HFG, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48(20):6296–6303. doi:10.1021/Jm050436v

    CAS  Google Scholar 

  76. Boer DR, Kroon J, Cole JC, Smith B, Verdonk ML (2001) SuperStar: comparison of CSD and PDB-based interaction fields as a basis for the prediction of protein–ligand interactions. J Mol Biol 312(1):275–287

    CAS  Google Scholar 

  77. Bruno IJ, Cole JC, Lommerse JPM, Rowland RS, Taylor R, Verdonk ML (1997) IsoStar: a library of information about nonbonded interactions. J Comput Aided Mol Des 11(6):525–537

    CAS  Google Scholar 

  78. Dittrich B, Koritsanszky T, Luger P (2004) A simple approach to nonspherical electron densities by using invarioms. Angew Chem Int Ed 43(20):2718–2721. doi:10.1002/anie.200353596

    CAS  Google Scholar 

  79. Hubschle CB, Dittrich B, Grabowsky S, Messerschmidt M, Luger P (2008) Comparative experimental electron density and electron localization function study of thymidine based on 20 K X-ray diffraction data. Acta Crystallogr B 64:363–374. doi:10.1107/s0108768108005776

    Google Scholar 

  80. Volkov A, Koritsanszky T, Li X, Coppens P (2004) Response to the paper. A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules, by Pichon-Pesme, Jelsch, Guillot & Lecomte (2004). Acta Crystallogr A 60:638–639. doi:10.1107/S0108767304016496

    Google Scholar 

  81. Dittrich B, Weber M, Kalinowski R, Grabowsky S, Hubschle CB, Luger P (2009) How to easily replace the independent atom model – the example of bergenin, a potential anti-HIV agent of traditional Asian medicine. Acta Crystallogr B 65:749–756. doi:10.1107/S0108768109046060

    Google Scholar 

  82. Dittrich B, Hubschle CB, Holstein JJ, Fabbiani FPA (2009) Towards extracting the charge density from normal-resolution data. J Appl Crystallogr 42:1110–1121. doi:10.1107/S0021889809034621

    CAS  Google Scholar 

  83. Mladenovic M, Arnone M, Fink RF, Engels B (2009) Environmental effects on charge densities of biologically active molecules: do molecule crystal environments indeed approximate protein surroundings? J Phys Chem B 113(15):5072–5082. doi:10.1021/Jp809537v

    CAS  Google Scholar 

  84. Bader RFW, Gatti C (1998) A Green’s function for the density. Chem Phys Lett 287(3–4):233–238

    CAS  Google Scholar 

  85. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian98. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  86. Gatti C, Bianchi R, Destro R, Merati F (1992) Experimental vs theoretical topological properties of charge-density distributions – an application to the l-alanine molecule studied by X-ray-diffraction at 23-K. J Mol Struct Theochem 87:409–433

    CAS  Google Scholar 

  87. Senn HM, Thiel W (2007) QM/MM methods for biological systems. In: Atomistic approaches in modern biology: from quantum chemistry to molecular simulations, vol 268, pp 173–290. doi:10.1007/128_2006_084

    Google Scholar 

  88. Monard G, Merz KM (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32(10):904–911

    CAS  Google Scholar 

  89. Gao JL, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505. doi:10.1146/annurev.physchem.53.091301.150114

    CAS  Google Scholar 

  90. Field MJ (2002) Simulating enzyme reactions: challenges and perspectives. J Comput Chem 23(1):48–58

    CAS  Google Scholar 

  91. Monard G, Prat-Resina X, Gonzalez-Lafont A, Lluch JM (2003) Determination of enzymatic reaction pathways using QM/MM methods. Int J Quantum Chem 93(3):229–244. doi:10.1002/Qua.10555

    CAS  Google Scholar 

  92. Ridder L, Mulholland AJ (2003) Modeling biotransformation reactions by combined quantum mechanical/molecular mechanical approaches: from structure to activity. Curr Top Med Chem 3(11):1241–1256

    CAS  Google Scholar 

  93. Bakowies D, Thiel W (1996) Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem 100(25):10580–10594

    CAS  Google Scholar 

  94. Field MJ, Bash PA, Karplus M (1990) A combined quantum-mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11(6):700–733

    CAS  Google Scholar 

  95. Amara P, Field MJ (2003) Evaluation of an ab initio quantum mechanical/molecular mechanical hybrid-potential link-atom method. Theor Chem Acc 109(1):43–52. doi:10.1007/s00214-002-0413-3

    CAS  Google Scholar 

  96. Reuter N, Dejaegere A, Maigret B, Karplus M (2000) Frontier bonds in QM/MM methods: a comparison of different approaches. J Phys Chem A 104(8):1720–1735

    CAS  Google Scholar 

  97. Singh UC, Kollman PA (1986) A combined abinitio quantum-mechanical and molecular mechanical method for carrying out simulations on complex molecular systems – applications to the CH3Cl + Cl – exchange reaction and gas-phase protonation of polyethers. J Comput Chem 7(6):718–730

    CAS  Google Scholar 

  98. Derat E, Bouquant J, Humbel S (2003) On the link atom distance in the ONIOM scheme. An harmonic approximation analysis. J Mol Struct Theochem 632:61–69. doi:10.1016/s0166-1280(03)00288-4

    CAS  Google Scholar 

  99. Klamt A, Schuurmann G (1993) Cosmo – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805

    Google Scholar 

  100. Schafer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) COSMO implementation in TURBOMOLE: extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys 2(10):2187–2193

    CAS  Google Scholar 

  101. Mathews II, VanderhoffHanaver P, Castellino FJ, Tulinsky A (1996) Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Biochemistry 35(8):2567–2576

    CAS  Google Scholar 

  102. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm – a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    CAS  Google Scholar 

  103. MacKerell ADJ, Brooks BR, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) The encyclopedia of computational chemistry, vol 1. Wiley, Chichester

    Google Scholar 

  104. Huet G, Flipo RM, Richet C, Thiebaut C, Demeyer D, Balduyck M, Duquesnoy B, Degand P (1992) Measurement of elastase and cysteine proteinases in synovial-fluid of patients with rheumatoid-arthritis, seronegative spondylarthropathies, and osteoarthritis. Clin Chem 38(9):1694–1697

    CAS  Google Scholar 

  105. Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S, Terstegen F, Thiel S, Kendrick J, Rogers SC, Casci J, Watson M, King F, Karlsen E, Sjovoll M, Fahmi A, Schafer A, Lennartz C (2003) QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J Mol Struct Theochem 632:1–28. doi:10.1016/s0166-1280(03)00285-9

    CAS  Google Scholar 

  106. Smith W, Forester TR (1996) DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph 14(3):136–141

    CAS  Google Scholar 

  107. TURBOMOLE V5.6 2005, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2005. Available from http://www.turbomole.com

  108. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  109. Becke AD (1988) Density-functional exchange-energy approximation with corrected asymptotic behaviour. Phys Rev A 38(6):3098–3100

    CAS  Google Scholar 

  110. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789

    CAS  Google Scholar 

  111. Schafer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Google Scholar 

  112. Schlund S, Muller R, Grassmann C, Engels B (2008) Conformational analysis of arginine in gas phase – a strategy for scanning the potential energy surface effectively. J Comput Chem 29(3):407–415. doi:10.1002/Jcc.20798

    CAS  Google Scholar 

  113. Schlund S, Mladenovic M, Janke EMB, Engels B, Weisz K (2005) Geometry and cooperativity effects in adenosine–carboxylic acid complexes. J Am Chem Soc 127(46):16151–16158. doi:10.1021/Ja0531430

    CAS  Google Scholar 

  114. Schlund S, Schmuck C, Engels B (2007) How important is molecular rigidity for the complex stability of artificial host–guest systems? A theoretical study on self-assembly of gas-phase arginine. Chem Eur J 13(23):6644–6653. doi:10.1002/chem.200601741

    CAS  Google Scholar 

  115. Hupp T, Sturm C, Janke EMB, Cabre MP, Weisz K, Engels B (2005) A combined computational and experimental study of the hydrogen-bonded dimers of xanthine and hypoxanthine. J Phys Chem A 109(8):1703–1712. doi:10.1021/Jp0460588

    CAS  Google Scholar 

  116. Schlund S, Schmuck C, Engels B (2005) “Knock-out” analogues as a tool to quantify supramolecular processes: a theoretical study of molecular interactions in guanidiniocarbonyl pyrrole carboxylate dimers. J Am Chem Soc 127(31):11115–11124. doi:10.1021/Ja052536w

    CAS  Google Scholar 

  117. Zhao HM, Pfister J, Settels V, Renz M, Kaupp M, Dehm VC, Wurthner F, Fink RF, Engels B (2009) Understanding ground- and excited-state properties of perylene tetracarboxylic acid bisimide crystals by means of quantum chemical computations. J Am Chem Soc 131(43):15660–15668. doi:10.1021/Ja902512e

    CAS  Google Scholar 

  118. Schlund S, Janke EMB, Weisz K, Engels B (2010) Predicting the tautomeric equilibrium of acetylacetone in solution. I. The right answer for the wrong reason? J Comput Chem 31(4):665–670. doi:10.1002/Jcc.21354

    CAS  Google Scholar 

  119. Musch PW, Engels B (2001) The importance of the Ene reaction for the C-2-C-6 cyclization of enyne-allenes. J Am Chem Soc 123(23):5557–5562. doi:10.1021/Ja010346p

    CAS  Google Scholar 

  120. Suter HU, Pless V, Ernzerhof M, Engels B (1994) Difficulties in the calculation of electron-spin-resonance parameters using density-functional methods. Chem Phys Lett 230(4–5):398–404

    CAS  Google Scholar 

  121. Groth P (1968) Crystal structure of trans form of 1,4-aminomethylcyclohexanecarboxylic acid. Acta Chem Scand 22(1):143–158

    Google Scholar 

  122. Gatti C, Saunders VR, Roetti C (1994) Crystal-field effects on the topological properties of the electron-density in molecular-crystals – the case of urea. J Chem Phys 101(12):10686–10696

    CAS  Google Scholar 

  123. Roby KR (1974) Quantum-theory of chemical valence concepts. 1. Definition of charge on an atom in a molecule and of occupation numbers for electron-density shared between atoms. Mol Phys 27(1):81–104

    CAS  Google Scholar 

  124. Heinzmann R, Ahlrichs R (1976) Population analysis based on occupation numbers of modified atomic orbitals (maos). Theor Chim Acta 42(1):33–45

    CAS  Google Scholar 

  125. Lecaille F, Kaleta J, Bromme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102(12):4459–4488. doi:10.1021/cr0101656

    CAS  Google Scholar 

  126. Sloane BF, Moin K, Krepela E, Rozhin J (1990) Cathepsin-B and its endogenous inhibitors – the role in tumor malignancy. Cancer Metastasis Rev 9(4):333–352

    CAS  Google Scholar 

  127. Otto HH, Schirmeister T (1997) Cysteine proteases and their inhibitors. Chem Rev 97(1):133–171

    CAS  Google Scholar 

  128. Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102(12):4639–4750. doi:10.1021/cr010182v

    CAS  Google Scholar 

  129. Yamamoto A, Tomoo K, Matsugi K, Hara T, In Y, Murata M, Kitamura K, Ishida T (2002) Structural basis for development of cathepsin B-specific noncovalent-type inhibitor: crystal structure of cathepsin B-E64c complex. Biochim Biophys Acta 1597(2):244–251

    CAS  Google Scholar 

  130. Vahtras O, Almlof J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213(5–6):514–518

    CAS  Google Scholar 

  131. Mladenovic M, Junold K, Fink RF, Thiel W, Schirmeister T, Engels B (2008) Atomistic insights into the inhibition of cysteine proteases: first QM/MM calculations clarifying the regiospecificity and the inhibition potency of epoxide- and aziridine-based inhibitors. J Phys Chem B 112(17):5458–5469. doi:10.1021/Jp711287c

    CAS  Google Scholar 

  132. Mladenovic M, Ansorg K, Fink RF, Thiel W, Schirmeister T, Engels B (2008) Atomistic insights into the inhibition of cysteine proteases: first QM/MM calculations clarifying the stereoselectivity of epoxide-based inhibitors. J Phys Chem B 112(37):11798–11808. doi:10.1021/Jp803895f

    CAS  Google Scholar 

  133. Mladenovic M, Schirmeister T, Thiel S, Thiel W, Engels B (2007) The importance of the active site histidine for the activity of epoxide- or aziridine-based inhibitors of cysteine proteases. Chemmedchem 2(1):120–128. doi:10.1002/cmdc.200600159

    CAS  Google Scholar 

  134. Mladenovic M, Fink RF, Thiel W, Schirmeister T, Engels B (2008) On the origin of the stabilization of the zwitterionic resting state of cysteine proteases: a theoretical study. J Am Chem Soc 130(27):8696–8705. doi:10.1021/ja711043x

    CAS  Google Scholar 

  135. Ishida T, Sakaguchi M, Yamamoto D, Inoue M, Kitamura K, Hanada K, Sadatome T (1988) Conformation of Ethyl (+)-(2S, 3S)-3-(1-N-(3-methylbutyl)amino leucyl-carbonyl)oxirane-2-carboxylate (Loxistatin), a cysteine protease inhibitor – X-ray crystallographic and H-1 nuclear magnetic resonance studies. J Chem Soc Perkin Trans 2(6):851–857

    Google Scholar 

  136. Helten H, Schirmeister T, Engels B (2005) Theoretical studies about the influence of different ring substituents on the nucleophilic ring opening of three-membered heterocycles and possible implications for the mechanisms of cysteine protease inhibitors. J Org Chem 70(1):233–237. doi:10.1021/Jo048373w

    CAS  Google Scholar 

  137. Helten H, Schirmeister T, Engels B (2004) Model calculations about the influence of protic environments on the alkylation step of epoxide, aziridine, and thiirane based cysteine protease inhibitors. J Phys Chem A 108(38):7691–7701. doi:10.1021/Jp048784g

    CAS  Google Scholar 

  138. de Vries AH, Sherwood P, Collins SJ, Rigby AM, Rigutto M, Kramer GJ (1999) Zeolite structure and reactivity by combined quantum-chemical-classical calculations. J Phys Chem B 103(29):6133–6141

    Google Scholar 

  139. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Engels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engels, B., Schmidt, T.C., Gatti, C., Schirmeister, T., Fink, R.F. (2011). Challenging Problems in Charge Density Determination: Polar Bonds and Influence of the Environment. In: Stalke, D. (eds) Electron Density and Chemical Bonding II. Structure and Bonding, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2010_36

Download citation

Publish with us

Policies and ethics