pp 1-34

Part of the Structure and Bonding book series | Cite as

Phase Equilibria, Morphologies of Microphase Separation, and Interfacial Structures of Polymer Systems Studied by Equations of State

  • Honglai Liu
  • Hui Xu
  • Houyang Chen
  • Changjun Peng
  • Ying Hu
Chapter

Abstract

Polymer blends or copolymers have multiscale complex structures that can be used as templates to prepare various complex materials. To regulate the mesoscale structures of these polymer blends or copolymers, there are three fundamental problems: What is the physical condition of the microphase separation needed to form materials with desired compositions and mesoscale structures in different domains? How do these compositions and mesoscale structures evolve during the preparation period? How does the morphology change in the interfacial region? Many experimental measurements, computer simulation methods, and theories have been developed. However, most of them are only suitable for individual tasks. In recent years, we have developed theoretical methods based on equations of state that can be used comprehensively to study the multiscale structure of polymer systems, including the phase diagrams, the morphologies and evolution of microphase separation, the densities and composition profiles in different domains, and the molecular configurations in the interfacial region. The molecular parameters of the equation of state or the Helmholtz function model can be determined from the pressure, volume, temperature, and miscibility data of polymers, which ensures the practical applicability of the methods.

Keywords

Density functional theory Dynamic density functional theory Microphase separation Molecular thermodynamics Non-uniform fluid Polymer system 

References

  1. 1.
    Bates FS (1991) Science 251:898PubMedADSCrossRefGoogle Scholar
  2. 2.
    Park M, Harrison C, Chainkin PM, Register RA, Adamson DH (1997) Science 276:1401CrossRefGoogle Scholar
  3. 3.
    Xia Y, Rogers JA, Paul KE, Whitesides GM (1999) Chem Rev 99:1823PubMedCrossRefGoogle Scholar
  4. 4.
    Li H, Huck WTS (2002) Curr Opin Solid State Mater 6:3CrossRefADSGoogle Scholar
  5. 5.
    Prausnitz JM, Lichtenthaler RN, Azevedo EG de (1999) Molecular thermodynamics of fluid-phase equilibria, 3Prentice-Hall PTR, Englewood Cliffsrd edn.Google Scholar
  6. 6.
    Sadus RJ (1999) Molecular simulation of fluids, theory, algorithms and object-orientation. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Chaikin PM, Lubensky TC (1995). Principles of condensed matter physics Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Matsen MW, Barrett C (1998) J Chem Phys 109:4108ADSCrossRefGoogle Scholar
  9. 9.
    Fraaije JGEM (1993) J Chem Phys 99:9202ADSCrossRefGoogle Scholar
  10. 10.
    Oono Y, Shiwa Y (1987) Moden Phys Letter B 1:49ADSCrossRefGoogle Scholar
  11. 11.
    Oono Y, Puri S (1988) Phys Rev A 38:434; 1542PubMedADSCrossRefGoogle Scholar
  12. 12.
    Groot RD, Warren PB (1997) J Chem Phys 107:4423ADSCrossRefGoogle Scholar
  13. 13.
    Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5971ADSCrossRefGoogle Scholar
  14. 14.
    Scheutjens JMHM, Fleer GJ (1979) J Phys Chem 83:1619CrossRefGoogle Scholar
  15. 15.
    Sun L, Peng CJ, Liu HL, Hu Y, Jiang JW (2007) J Chem Phys 126:094905PubMedADSCrossRefGoogle Scholar
  16. 16.
    Feng J, Liu HL, Hu Y (2005) Mol Simul 31:731MATHCrossRefGoogle Scholar
  17. 17.
    Wertheim MS (1987) J Chem Phys 87:7323ADSCrossRefGoogle Scholar
  18. 18.
    Chapman WG, Gubbins KE, Jackson G, Radosz M (1990) Ind Eng Chem Res 29:31CrossRefGoogle Scholar
  19. 19.
    Huang SH, Radosz M (1990) Ind Eng Chem Res 29:2284CrossRefGoogle Scholar
  20. 20.
    Huang SH, Radosz M (1991) Ind Eng Chem Res 30:1994CrossRefGoogle Scholar
  21. 21.
    Chiew YC, (1990) Mol Phys 70:129ADSCrossRefGoogle Scholar
  22. 22.
    Chang J, Sandler SI (1994) Chem Eng Sci 49:2777CrossRefGoogle Scholar
  23. 23.
    Song YH, Lambert S.M, Prausnitz JM (1994) Ind Eng Chem Res 33:1047CrossRefGoogle Scholar
  24. 24.
    Gil-Villegas, AGalindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN (1997) J Chem Phys 106:4168ADSCrossRefGoogle Scholar
  25. 25.
    Gross J, Sadowski G (2001) Ind Eng Chem Res 40:1244CrossRefGoogle Scholar
  26. 26.
    Hu Y, Liu HL, Prausnitz JM (1996) J Chem Phys 104:396ADSCrossRefGoogle Scholar
  27. 27.
    Cummings PT, Stell G (1985) Mol Phys 55:33ADSCrossRefGoogle Scholar
  28. 28.
    Zhou Y, Stell G (1992) J Chem Phys 96:1504ADSCrossRefGoogle Scholar
  29. 29.
    Liu HL, Hu Y (1996) Fluid Phase Equilibria 122:75CrossRefGoogle Scholar
  30. 30.
    Liu HL, Hu Y (1997) Fluid Phase Equilibria 138:69CrossRefGoogle Scholar
  31. 31.
    Alder BJ, Young DA, Mark MA (1972) J Chem Phys 56:3013ADSCrossRefGoogle Scholar
  32. 32.
    Liu HL, Zhou H, Hu Y (1997) Chinese J Chem Eng 5:193Google Scholar
  33. 33.
    Liu HL, Hu Y (1998) Ind Eng Chem Res 37:3058CrossRefGoogle Scholar
  34. 34.
    Peng CJ, Liu HL, Hu Y (2001) Chinese J Chem 19:1165CrossRefGoogle Scholar
  35. 35.
    Tildesley DJ, Streett WB (1980) Mol Phys 41:85ADSCrossRefGoogle Scholar
  36. 36.
    Liu HL, Rong ZM, Hu Y (1995) J East China Univers Sci Techn 21:619 (in Chinese)Google Scholar
  37. 37.
    Liu HL, Hu Y (1996) J Chem Eng Chinese-Univers 10:337 (in Chinese)Google Scholar
  38. 38.
    Liu HL, Rong ZM, Hu Y (1996) Chinese J Chem Eng 4:95Google Scholar
  39. 39.
    Yethiraj A, Hall CK (1991) J Chem Phys 95:1999ADSCrossRefGoogle Scholar
  40. 40.
    Yethiraj A, Hall CK (1991) J Chem Phys 95:8494ADSCrossRefGoogle Scholar
  41. 41.
    Yethiraj A, Hall CK (1991) Mol Phys 72:619ADSCrossRefGoogle Scholar
  42. 42.
    Ghonasgi D, Chapman WG (1993) Mol Phys 80:161ADSCrossRefGoogle Scholar
  43. 43.
    Mansoori GA, Carnahan NF, Starling KE, Leland TW (1971) J Chem Phys 54:1523ADSCrossRefGoogle Scholar
  44. 44.
    Peng CJ, Liu HL, Hu Y (2002) Fluid Phase Equilibria 201:19Google Scholar
  45. 45.
    Peng C.J, Liu HL, Hu Y (2002) Fluid Phase Equilibria 202:67CrossRefGoogle Scholar
  46. 46.
    Peng CJ, Liu HL, Hu Y (2003) Fluid Phase Equilibria 206:147CrossRefGoogle Scholar
  47. 47.
    Zhou H, Liu HL, Hu Y (1998) J Chem Ind, Eng.(China) 49:1 (in Chinese)Google Scholar
  48. 48.
    Zhou H, Liu HL, Hu Y (1998) J East China Univers Sci Techn 24:209 (in Chinese)Google Scholar
  49. 49.
    Wang TF, Peng CJ, Liu HL, Hu Y (2006) Fluid Phase Equilibria 250:150CrossRefGoogle Scholar
  50. 50.
    Wang TF, Peng CJ, Liu HL, Hu Y, Jiang JW (2007) Ind Eng Chem Res 46:4323CrossRefGoogle Scholar
  51. 51.
    Peng CJ, Liu HL, Hu Y (2003) Fluid Phase Equilibria 206:127CrossRefGoogle Scholar
  52. 52.
    Peng CJ, Liu HL, Hu Y (2002) Ind Eng Chem Res 41:862CrossRefGoogle Scholar
  53. 53.
    Peng CJ, Liu HL, Hu Y (2001) Fluid Phase Equilibria 180:299CrossRefGoogle Scholar
  54. 54.
    Peng CJ, Liu HL, Hu Y (2001) Chem Eng Sci 56:6967CrossRefGoogle Scholar
  55. 55.
    Whiting WB, Prausnitz JM (1982) Fluid Phase Equilibria 9:119CrossRefGoogle Scholar
  56. 56.
    Wang SL, Peng CJ, Shi JB, Liu HL, Hu Y (2003) Fluid Phase Equilibria 213:99CrossRefGoogle Scholar
  57. 57.
    Li JL, Ma J, Peng CJ, Liu HL, Hu Y, Jiang JW (2007) Ind Eng Chem Res 46:7267CrossRefGoogle Scholar
  58. 58.
    Zhou YX, Peng CJ, Qiu DL, He EC, Liu HL (2006) J East China Univers Sci Techn 32:953 (in Chinese)Google Scholar
  59. 59.
    Zhou YX, Peng CJ, He EC, Liu HL (2006) Petrochem Techn 35:1063 (in Chinese)Google Scholar
  60. 60.
    Xuan AG, Wu YX, Peng CJ, Ma PS (2006) Fluid Phase Equilibria 240:15 (in Chinese)CrossRefGoogle Scholar
  61. 61.
    Feng J, Liu HL, Hu Y (2003) J Chem Ind, Eng.(China) 54:881 (in Chinese)Google Scholar
  62. 62.
    Jiang JW, Liu HL, Hu Y, Prausnitz JM (1998) J Chem Phys 108:780ADSCrossRefGoogle Scholar
  63. 63.
    Jiang JW, Liu HL, Hu Y (1999) J Chem Phys 110:4952ADSCrossRefGoogle Scholar
  64. 64.
    Zhang B, Cai J, Liu HL, Hu Y (2002) Chinese J Chem Eng 10:311Google Scholar
  65. 65.
    Yang JY, Liu N, Yu DH, Peng CJ, Liu HL, Hu Y, Jiang JW (2005) Ind Eng Chem Res 44:8120CrossRefGoogle Scholar
  66. 66.
    Jiang JW, Feng J, Liu HL, Hu Y (2006) J Chem Phys 124:144908PubMedADSCrossRefGoogle Scholar
  67. 67.
    Feng J, Liu HL, Hu Y (2006) Mol Simul 32:51MATHCrossRefGoogle Scholar
  68. 68.
    Yang JY, Peng CJ, Liu HL, Hu Y, Jiang JW (2006) Fluid Phase Equilibria 244:188CrossRefGoogle Scholar
  69. 69.
    Yang JY, Yan QL, Liu HL, Hu Y (2006) Polymer 47:5187CrossRefGoogle Scholar
  70. 70.
    Yang JY, Peng CJ, Liu HL, Hu Y (2006) Ind Eng Chem Res 45:6811CrossRefGoogle Scholar
  71. 71.
    Yang JY, Peng CJ, Liu HL, Hu Y (2006) Fluid Phase Equilibria 249:192CrossRefGoogle Scholar
  72. 72.
    Liu HL, Yang JY, Xin Q, Hu Y (2007) Fluid Phase Equilibria 261:281CrossRefGoogle Scholar
  73. 73.
    Huang YM, Jin XC, Liu HL, Hu Y (2008) Fluid Phase Equilibria 263:96CrossRefGoogle Scholar
  74. 74.
    Xu XC, Liu HL, Peng CJ, Hu Y (2008) Fluid Phase Equilibria 265:112 CrossRefGoogle Scholar
  75. 75.
    Xin Q, Peng CJ, Liu HL, Hu Y (2008) Fluid Phase Equilibria 267:163CrossRefGoogle Scholar
  76. 76.
    Hu Y, Liu HL (2006) Fluid Phase Equilibria 241:248CrossRefGoogle Scholar
  77. 77.
    Park M, Harrison C, Chainkin PM, Register RA, Adamson DH (1997) Science 276:1401CrossRefGoogle Scholar
  78. 78.
    Xia Y, Rogers JA, Paul KE, Whitesides GM (1999) Chem Rev 99:1823PubMedCrossRefGoogle Scholar
  79. 79.
    Li HW, Huck WTS (2002) Curr Opin Solid State Mater Sci 6:3CrossRefADSGoogle Scholar
  80. 80.
    Feng J, Cai J, Liu HL, Hu Y (2000) J East China Univers Sci Techn 26:421 (in Chinese)Google Scholar
  81. 81.
    Xu H, Liu HL, Hu Y (2007) Chem Eng Sci 62:3494CrossRefGoogle Scholar
  82. 82.
    Xu H, Liu HL, Hu Y (2007) Macromol Theory Simul 16:262CrossRefGoogle Scholar
  83. 83.
    Hajduk DA, Urayama P, Gruner SM, Erramilli S, Register RA, Brister K, Fetters LJ (1995) Macromolecules 28:7148CrossRefADSGoogle Scholar
  84. 84.
    Hajduk DA, Gruner SM, Erramilli S, Register RA, Fetters LJ (1996) Macromolecules 29:1473CrossRefADSGoogle Scholar
  85. 85.
    Pollard M, Russell TP, Ruzette AV, Mayes AM, Gallot Y (1998) Macromolecules 31:6493CrossRefADSGoogle Scholar
  86. 86.
    Ruzette AVG, Mayes AM, Pollard M, Russell TP, Hammouda B (2003) Macromolecules 36:3351CrossRefADSGoogle Scholar
  87. 87.
    Schwahn D, Frielinghaus H, Mortensen K, Almdal K (1998)Physica B 241–243:1029Google Scholar
  88. 88.
    Sun H (1998) J Phys Chem B 102:7338CrossRefGoogle Scholar
  89. 89.
    Sato F, Hojo S, Sun H (2003) J Phys Chem A 107:248CrossRefGoogle Scholar
  90. 90.
    Park DW, Roe RJ (1991) Macromolecules 24:5324CrossRefADSGoogle Scholar
  91. 91.
    Roe RJ, Zin WC (1980) Macromolecules 13:1221CrossRefADSGoogle Scholar
  92. 92.
    Ladanyi BM, Chandler D (1975) J Chem Phys 62:4308ADSCrossRefGoogle Scholar
  93. 93.
    Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5971ADSCrossRefGoogle Scholar
  94. 94.
    Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5977ADSCrossRefGoogle Scholar
  95. 95.
    McCoy JD, Singer SJ, Chandler D (1987) J Chem Phys 87:4853ADSCrossRefGoogle Scholar
  96. 96.
    Hooper JB, Pileggi MT, McCoy JD, Gurro JG, Weinhold JD (2000) J Chem Phys 112:3094ADSCrossRefGoogle Scholar
  97. 97.
    Woodward CE (1991) J Chem Phys 94:3183ADSCrossRefGoogle Scholar
  98. 98.
    Kierlik E, Rosinberg ML (1994) J Chem Phys 100:1716ADSCrossRefGoogle Scholar
  99. 99.
    Nath SK, Nealey PF, Pablo JJ de (1999) J Chem Phys 110:7483ADSCrossRefGoogle Scholar
  100. 100.
    Cai J, Liu HL, Hu Y (2002) Fluid Phase Equilibria 194–197:281CrossRefGoogle Scholar
  101. 101.
    Zhang SL, Cai J, Liu HL, Hu Y (2004) Mol Simul 30:143MATHCrossRefGoogle Scholar
  102. 102.
    Ye ZC, Cai J, Liu HL, Hu Y (2005) J Chem Phys 123:194902PubMedADSCrossRefGoogle Scholar
  103. 103.
    Ye ZC, Chen HY, Cai J, Liu HL, Hu Y (2006) J Chem Phys 125:124705PubMedADSCrossRefGoogle Scholar
  104. 104.
    Ye ZC, Chen HY, Liu HL, Hu Y, Jiang JW (2007) J Chem Phys 126:134903PubMedADSCrossRefGoogle Scholar
  105. 105.
    Chen HY, Ye ZC, Cai J, Liu HL, Hu Y, Jiang J (2007) J Phys Chem B:1115927CrossRefGoogle Scholar
  106. 106.
    Yu YX, Wu JZ (2002) J Chem Phys 117:2368ADSCrossRefGoogle Scholar
  107. 107.
    Rosenfeld Y (1989) Phys Rev Lett 63:980PubMedADSCrossRefGoogle Scholar
  108. 108.
    Tripathi S, Chapman WG (2005) J Chem Phys 122:094506PubMedADSCrossRefGoogle Scholar
  109. 109.
    Chapman WG, Jackson G, Gubbins KE (1988) Mol Phys 65:1057ADSCrossRefGoogle Scholar
  110. 110.
    Yethiraj A, Woodward CE (1995) J Chem Phys 102:5499ADSCrossRefGoogle Scholar
  111. 111.
    Patra CN, Yethiraj A (2000) J Chem Phys 112:1579ADSCrossRefGoogle Scholar
  112. 112.
    Cai J, Liu HL, Hu Y (2000) J East China Unvers Sci Techn 26:100 (In Chinese)Google Scholar
  113. 113.
    Ye ZC, Zhang SL, Cai J, Liu HL, Hu Y (2006) J Chem Eng Chinese Univers 20:18 (in Chinese)Google Scholar
  114. 114.
    Chen HY, Ye ZC, Peng CJ, Liu HL, Hu Y (2006) J Chem Phys 125:204708PubMedADSCrossRefGoogle Scholar
  115. 115.
    Semler JJ, Genzer J (2003) J Chem Phys 119:5274ADSCrossRefGoogle Scholar
  116. 116.
    Zhang SL, Cai J, LIu HL, Hu Y (2002) J East China Unvers Sci Techn 28:274 (in Chinese)Google Scholar
  117. 117.
    Cao DP. Wu JZ (2005) Macromolecules 38:971CrossRefADSGoogle Scholar
  118. 118.
    Zhou SQ (2003) J Phys Chem B 107:3585CrossRefGoogle Scholar
  119. 119.
    Henderson JR, Swol F van (1988) J Chem Phys 89:5010ADSCrossRefGoogle Scholar
  120. 120.
    Velankar S, Cooper SL (1998) Macromolecules 31:9181CrossRefADSGoogle Scholar
  121. 121.
    Jeon J, Dobrynin AV (2003) Phys Rev E 67:061803ADSCrossRefGoogle Scholar
  122. 122.
    Chen HY, Peng CJ, Ye ZC, Liu HL, Hu Y, Jiang JW (2007) Langmuir 23:2430PubMedCrossRefGoogle Scholar
  123. 123.
    Scheutjens JMHM, Fleer GJ (1985) Macromolecules 18:1882CrossRefADSGoogle Scholar
  124. 124.
    Daoulas KC, Harmandaris VA, Mavrantzas VG (2005) Macromolecules 38:5780CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  • Honglai Liu
    • 1
  • Hui Xu
    • 1
  • Houyang Chen
    • 1
  • Changjun Peng
    • 1
  • Ying Hu
    • 1
  1. 1.State Key Laboratory of Chemical Engineering and Department of ChemistryEast China University of Science and TechnologyShanghaiChina

Personalised recommendations