Skip to main content

Organic Difluoramine Derivatives

  • Chapter
  • First Online:
High Energy Density Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 125))

Abstract

This article reviews recent developments in synthesis and characterizations of organic difluoramine (NF2) derivatives since the 1980s. Specific classes of chemical compounds are covered: cyclic difluoramino-nitramines, especially gem-bis(difluoramino)-substituted analogs of conventional nitramines; products from the relatively new transformation of electrophilic difluoramination; other classes of difluoramines such as polymers, plasticizers, and compounds not otherwise categorized. Also covered are aspects of other recently developed synthetic methodology to prepare compounds in this general class, as well as purely theoretical treatments of the chemistry and properties of this class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furin GG, Fainzilberg AA (1999) Russ Chem Rev 68:653

    CAS  Google Scholar 

  2. Taylor SD, Kotoris CC, Hum G (1999) Tetrahedron 55:12431

    CAS  Google Scholar 

  3. Li Y (2001) Huaxue Shiji [Chemical Reagents] 23:143

    Google Scholar 

  4. Colburn CB (1965) Endeavour 24:138

    CAS  Google Scholar 

  5. Fokin AV, Kosyrev YuM (1966) Russ Chem Rev 35:791

    Google Scholar 

  6. Freeman JP (1967) Inorg Chim Acta Rev 1:65

    CAS  Google Scholar 

  7. Ruff JK (1967) Chem Rev 67:665

    CAS  Google Scholar 

  8. Klapötke TM (2006) J Fluorine Chem 127:679

    Google Scholar 

  9. Politzer P, Lane P (1997) Adv Mol Struct Res 3:269

    CAS  Google Scholar 

  10. Brown RC, Kolb CE, Yetter RA, Dryer FL, Rabitz H (1995) Combust Flame 101:221

    CAS  Google Scholar 

  11. Yetter RA, Dryer FL, Rabitz H, Brown RC, Kolb CE (1998) Combust Flame 112:387

    CAS  Google Scholar 

  12. Ammon HL (2001) Struct Chem 12:205

    CAS  Google Scholar 

  13. Ruff O, Giese M (1936) Ber Dtsch Chem Ges B 69B:598

    CAS  Google Scholar 

  14. Davenas A (2003) J Propul Power 19:1108

    CAS  Google Scholar 

  15. Holzmann RT (ed) (1966) Advanced propellant chemistry. American Chemical Society, Washington, DC

    Google Scholar 

  16. Fokin AV, Kosyrev YuM (1970) Zh Vses Ova im D I Mendeleeva 15:81

    CAS  Google Scholar 

  17. Fokin AV, Kosyrev YuM (1970) Mendeleev Chem J 15:109

    Google Scholar 

  18. Baum K (1971) Intra-Sci Chem Rep 5:69

    CAS  Google Scholar 

  19. Fokin AV, Studnev YuN, Kuznetsova LD (1976) Reakts Metody Issled Org Soedin 24:7

    CAS  Google Scholar 

  20. Fokin AV, Studnev YuN (1982) Izv Akad Nauk SSSR Ser Khim 1812

    Google Scholar 

  21. Fokin AV, Studnev YuN (1982) Bull Acad Sci USSR Div Chem Sci 31:1609

    Google Scholar 

  22. Fokin AV, Kosyrev YuM, Shevchenko VI (1982) Izv Akad Nauk SSSR Ser Khim 1831

    Google Scholar 

  23. Fokin AV, Kosyrev YuM, Shevchenko VI (1982) Bull Acad Sci USSR Div Chem Sci 31:1626

    Google Scholar 

  24. Urbański T (1984) Chemistry and technology of explosives, vol 4, chap 9. Pergamon, Oxford

    Google Scholar 

  25. Hanefeld W (1990) N,N-Dihalogen-amine. In: Klamann D (ed) Methoden der organischen chemie (Houben-Weyl), vol E16a, organische Stickstoff-Verbindungen I, Part 2. Georg Thieme, Stuttgart, p 893

    Google Scholar 

  26. Miller RS (1996) Mater Res Soc Symp Proc 418:3

    CAS  Google Scholar 

  27. Chapman RD, Archibald TG, Baum K (1989) Research in energetic compounds. Report ONR-7-1 (interim). Fluorochem, Azusa, CA; NTIS accession number ADA214106, available from http://www.ntis.gov/help/ordermethods.asp , last visited: 23 April 2007

  28. Zheng Y, Huang T, Zhang M, Wang X (1987) A study on the syntheses and detonation properties of difluoroamino compounds. In: Ding J (ed) Proceedings of the international symposium on pyrotechnics and explosives. China Academic, Beijing, p 234

    Google Scholar 

  29. Zheng Y, Zhou J, Zhou D, Zhang M (1988) Binggong Xuebao [Acta Armamentarii] 59

    Google Scholar 

  30. Zheng Y, Zhou J, Zhou D, Zhang M (1988) Chem Abstr 109:189782

    Google Scholar 

  31. Sayles DC (1972) US Patent 3636154

    Google Scholar 

  32. Tyler WE, Lovett JR (1972) US Patent 3687954

    Google Scholar 

  33. Baum K, Trivedi NJ, Lovato JM, Iyer VK (1993) Novel approaches to the synthesis of fluorodinitromethane and fluorodinitroethanol. Report NRO-1-1 (final). Fluorochem, Azusa, CA; available at http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=A269158&Location=U2&doc=GetTRDoc.pdf , last visited: 26 April 2007

  34. Fluorochem (1991) Research in energetic compounds. Report ONR-7-1 (final) to the Office of Naval Research (Arlington, VA) on Contract N00014-88-C-0536. Fluorochem, Azusa, CA. Described in: Baum K, Trivedi NJ, Lovato JM, Iyer VK (1993) Novel approaches to the synthesis of fluorodinitromethane and fluorodinitroethanol. Report NRO-1-1 (final). Fluorochem, Azusa, CA; NTIS accession no. ADA269158, available at http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=A269158 , last visited: 26 April 2007

  35. Chapman RD, Welker MF, Kreutzberger CB (1998) J Org Chem 63:1566

    CAS  Google Scholar 

  36. Chapman RD, Gilardi RD, Welker MF, Kreutzberger CB (1999) J Org Chem 64:960

    CAS  Google Scholar 

  37. Chapman RD, Groshens TJ (2004) US Patent Application 11/010059

    Google Scholar 

  38. Adolph HG, Stern AG (2006) US Patent 7145003

    Google Scholar 

  39. Ammon HL, Holden JR, Du Z (2002) Structure and density predictions for energetic materials. In: Energetic materials design MURI kick-off meeting [extended abstracts]. Aberdeen Proving Ground, MD. http://www.chem.missouri.edu/Thompson/MURI02/extended/Ammon_MURI_extended_abstract_4.pdf , last visited: 20 April 2007

  40. Oyumi Y, Brill TB, Rheingold AL (1986) J Phys Chem 90:2526

    CAS  Google Scholar 

  41. Achuthan CP, Jose CI (1990) Propellants Explos Pyrotech 15:271

    CAS  Google Scholar 

  42. Ryzhkov LR, McBride JM (1997) J Am Chem Soc 119:4826

    CAS  Google Scholar 

  43. Peiris SM (2002) Experimental and computational studies of molecular and lattice symmetries of energetic materials at high pressure. DTIC, available at http://stinet.dtic.mil/str/quick-tr.html , last visited: 23 April 2007

  44. Gobin C, Orwig J, Nicol M (2006) American Physical Society March Meeting, Baltimore, MD, abstract Q1.150. http://meetings.aps.org/link/BAPS.2006.MAR.Q1.150 , last visited: 20 April 2007

  45. Nicol M, Gobin C, Kim E (2007) American Physical Society March Meeting, Denver, CO, abstract V23.6. http://meetings.aps.org/link/BAPS.2007.MAR.V23.6 , last visited: 20 April 2007

  46. Degirmenbasi N, Peralta-Inga Z, Olgun U, Gocmez H, Kalyon DM (2006) J Energ Mater 24:103

    CAS  Google Scholar 

  47. Peralta-Inga Z, Degirmenbasi N, Olgun U, Gocmez H, Kalyon DM (2006) J Energ Mater 24:69

    CAS  Google Scholar 

  48. Chew JW, Black SN, Chow PS, Tan RBH, Carpenter KJ (2007) Cryst Eng Comm 9:128

    CAS  Google Scholar 

  49. HNFX Rev. 1.3 (2005) Material safety data sheet (MSDS). Naval Air Weapons Station, China Lake, CA

    Google Scholar 

  50. Cady HH, Smith LC (1962) Studies on the polymorphs of HMX. Report LAMS-2652. Los Alamos Scientific Laboratory, Los Alamos, NM

    Google Scholar 

  51. Licht HH (1971) In: Hansson J (ed) Proceedings of symposium on chemical problems connected with the stability of explosives. Sektionen för Detonik och Förbränning, Sundbyberg, Sweden, p 168

    Google Scholar 

  52. McCrone WC (2001) Microscope 49:47

    CAS  Google Scholar 

  53. Zhang J, Oxley J, Smith J, Bedford C, Chapman R (2000) J Mass Spec 35:841

    CAS  Google Scholar 

  54. Oxley JC, Smith JL, Zhang J, Bedford C (2001) J Phys Chem A 105:579

    CAS  Google Scholar 

  55. Kuo KK, Young G (2002) Proc Combust Inst 29:2947

    CAS  Google Scholar 

  56. Chapman RD, Nguyen BV (2001) US Patent 6310204

    Google Scholar 

  57. Emmons WD, Freeman JP (1955) J Am Chem Soc 77:6061

    CAS  Google Scholar 

  58. Luk'yanov OA, Ternikova TV (1983) Izv Akad Nauk SSSR Ser Khim 667

    Google Scholar 

  59. Luk'yanov OA, Ternikova TV (1983) Bull Acad Sci USSR Div Chem Sci 32:605

    Google Scholar 

  60. Garcia J, González J, Segura R, Urpí F, Vilarrasa J (1984) J Org Chem 49:3322

    CAS  Google Scholar 

  61. Axenrod T, Guan X-P, Sun J, Qi L, Chapman RD, Gilardi RD (2001) Tetrahedron Lett 42:2621

    CAS  Google Scholar 

  62. Park Y-D, Cho S-D, Kim J-J, Kim H-K, Kweon D-H, Lee S-G, Yoon Y-J (2006) J Heterocycl Chem 43:519

    Article  CAS  Google Scholar 

  63. Gilardi R (2004) Polytypical polymorphs occurring in an energetic material. In: Virtual course on polymorphism: diversity amidst similarity, International School of Crystallography – 35th course, Erice, Sicily, Italy; http://erice2004.docking.org/vcourse/polymorph/15tue/1830-Gilardi/Gilardi.ppt , last visited: 20 April 2007

  64. Dunn BP (2001) Rocket engine specific impulse program. http://dunnspace.com/isp.htm , last visited: 20 April 2007

  65. Hong W-L, Tian D-Y, Liu J-H, Wang F (2001) Guti Huojian Jishu [J Solid Rocket Technol] 24:41

    CAS  Google Scholar 

  66. Hong W-L, Tian D-Y, Liu J-H, Wang F (2001) Chem Abstr 135:275005

    Google Scholar 

  67. Politzer P, Murray JS, Grice ME, Sjoberg P (1991) Computer-aided design of monopropellants. In: Olah GA, Squire DR (eds) Chemistry of energetic materials, chap 4. Academic, San Diego, CA

    Google Scholar 

  68. Feng Z (2000) Huaxue Jinzhan [Prog Chem] 12:171

    CAS  Google Scholar 

  69. Feng Z (2000) Chem Abstr 134:88422

    Google Scholar 

  70. Tan G-H (2000) 2 [Trends in Explosives]

    Google Scholar 

  71. Li S-W, Zhao F-Q, Yuan C, Luo Y, Gao Y (2002) Guti Huojian Jishu [J Solid Rocket Technol] 25:36

    CAS  Google Scholar 

  72. Li S-W, Zhao F-Q, Yuan C, Luo Y, Gao Y (2002) Chem Abstr 138:6183

    Google Scholar 

  73. Kim YG (2004) BK21 Program in Chemical Engineering, Seoul National University, Newsletter 5(1):22, http://web.archive.org/web/20041112214526/http://bk21-chem-eng.snu.ac.kr /news/newsletter/2004_spring/5-1.pdf , last visited: 23 April 2007

  74. Pepekin VI (1994) Khim Fiz 13:42

    CAS  Google Scholar 

  75. Pepekin VI (1994) Chem Phys Rep 13:67

    Google Scholar 

  76. Litvinov BV, Fainzil'berg AA, Pepekin VI, Smirnov SP, Loboiko BG, Shevelev SA, Nazin GM (1994) Dokl Akad Nauk 336:67

    CAS  Google Scholar 

  77. Litvinov BV, Fainzil'berg AA, Pepekin VI, Smirnov SP, Loboiko BG, Shevelev SA, Nazin GM (1994) Dokl Chem 336:86

    Google Scholar 

  78. Dalinger IL, Vinogradov VM, Shevelev SA, Kuz'min VS (1996) Mendeleev Commun 6:13

    Google Scholar 

  79. Dalinger IL, Vinogradov VM, Shevelev SA, Kuz'min VS, Arnautova EA, Pivina TS (1998) Propellants Explos Pyrotech 23:212

    CAS  Google Scholar 

  80. Fokin AV, Studnev YuN, Kuznetsova LD (1996) Dokl Akad Nauk 346:358

    CAS  Google Scholar 

  81. Fokin AV, Studnev YuN, Kuznetsova LD (1996) Dokl Chem 346:22

    Google Scholar 

  82. Fokin AV, Studnev YuN, Rapkin AI, Kuznetsova LD (1996) Izv Akad Nauk Ser Khim 2689

    Google Scholar 

  83. Fokin AV, Studnev YuN, Rapkin AI, Kuznetsova LD (1996) Russ Chem Bull 45:2547

    Google Scholar 

  84. Fokin AV, Studnev YuN, Kuznetsova LD (1996) Izv Akad Nauk Ser Khim 2056

    Google Scholar 

  85. Fokin AV, Studnev YuN, Kuznetsova LD (1996) Russ Chem Bull 45:1952

    Google Scholar 

  86. Fokin AV, Studnev YuN, Stolyarov VP, Valiev RSh (1999) Izv Akad Nauk Ser Khim 130

    Google Scholar 

  87. Fokin AV, Studnev YuN, Stolyarov VP, Valiev RSh (1999) Russ Chem Bull 48:131

    CAS  Google Scholar 

  88. Khisamutdinov GKh, Slovetsky VI, Golub YuM, Shevelev SA, Fainzil'berg AA (1997) Izv Akad Nauk Ser Khim 338

    Google Scholar 

  89. Khisamutdinov GKh, Slovetsky VI, Golub YuM, Shevelev SA, Fainzil'berg AA (1997) Russ Chem Bull 46:324

    CAS  Google Scholar 

  90. Khisamutdinov GKh, Shevelev SA (2001) Izv Akad Nauk Ser Khim 706

    Google Scholar 

  91. Khisamutdinov GKh, Shevelev SA (2001) Russ Chem Bull 50:736

    CAS  Google Scholar 

  92. Shchetinin VG (1999) Fiz Goreniya Vzryva 35:116

    CAS  Google Scholar 

  93. Shchetinin VG (1999) Combust Explos Shock Waves (Engl Transl) 35:570

    Google Scholar 

  94. Grebennikov VN, Nazin GM, Manelis GB (1995) Izv Akad Nauk Ser Khim 649

    Google Scholar 

  95. Grebennikov VN, Nazin GM, Manelis GB (1995) Russ Chem Bull 44:628

    Google Scholar 

  96. Pepekin V (1996) Development of high-efficiency energetic explosives. 27th international annual conference of ICT, 25–28 June 1996, Karlsruhe, Germany,

    Google Scholar 

  97. Pepekin VI, Gubin SA (2007) Fiz Goreniya Vzryva 43:99

    CAS  Google Scholar 

  98. Pepekin VI, Gubin SA (2007) Combust Explos Shock Waves (Engl Transl) 43:84

    Google Scholar 

  99. Jiang Z, Xu G, Chen Y (1990) 21st International Annual Conference of ICT, Karlsruhe, Germany

    Google Scholar 

  100. Gilardi R, Evans RN, Manser GE (2003) Acta Crystallogr Sect E Struct Rep Online E59:o2032

    CAS  Google Scholar 

  101. Archibald TG, Manser GE, Immoos JE (1993) US Patent 5272249

    Google Scholar 

  102. Archibald TG, Manser GE, Immoos JE (1995) US Patent 5420311

    Google Scholar 

  103. Solomun T, Schimanski A, Sturm H, Illenberger E (2005) Macromolecules 38:4231

    CAS  Google Scholar 

  104. Grakauskas V, Baum K (1970) J Org Chem 35:1545

    CAS  Google Scholar 

  105. Archibald TG, Manser GE (1994) PCT Patent WO 94/05643

    Google Scholar 

  106. Archibald TG, Manser GE (1998) US Patent 5789617

    Google Scholar 

  107. Rice JK, Russell TP (1996) Mater Res Soc Symp Proc 418:373

    CAS  Google Scholar 

  108. Adolph HG, Trivedi NJ (2001) US Patent 6325876

    Google Scholar 

  109. Fokin AV, Tselinskii IV, Mel'nikova SF, Vergizov SN, Studnev YuN, Stolyarov VP, Il'in SS (1986) Izv Akad Nauk SSSR Ser Khim 2086

    Google Scholar 

  110. Fokin AV, Tselinskii IV, Mel'nikova SF, Vergizov SN, Studnev YuN, Stolyarov VP, Il'in SS (1986) Bull Acad Sci USSR Div Chem Sci 35:1901

    Google Scholar 

  111. Fokin AV, Studnev YuN, Stolyarov VP, Mel'nikov AA (2000) Izv Akad Nauk Ser Khim 950

    Google Scholar 

  112. Fokin AV, Studnev YuN, Stolyarov VP, Mel'nikov AA (2000) Russ Chem Bull 49:949

    CAS  Google Scholar 

  113. John EO, Kirchmeier RL, Shreeve JM (1990) J Fluorine Chem 47:333

    CAS  Google Scholar 

  114. Zheng YY, Zhou JZ, Huang TJ, Zhou DL, Zhang MN (1985) J Fluorine Chem 29:216

    Google Scholar 

  115. Butcher RJ, Gilardi R, Baum K, Trivedi NJ (2002) Thermochim Acta 384:219

    CAS  Google Scholar 

  116. Fokin AV, Voronkov AN, Timofeenko IA (1978) Izv Akad Nauk SSSR Ser Khim 2644

    Google Scholar 

  117. Fokin AV, Voronkov AN, Timofeenko IA (1978) Bull Acad Sci USSR Div Chem Sci 27:2366

    Google Scholar 

  118. Prakash GKS, Bae C, Kroll M, Olah GA (2002) J Fluorine Chem 117:103

    Google Scholar 

  119. Majumder U, Armantrout JR, Williams RV, Shreeve JM (2002) J Org Chem 67:8435

    CAS  Google Scholar 

  120. Fokin AV, Grebennikov VN, Manelis GB, Nazin GM (1993) Dokl Akad Nauk 332:735

    CAS  Google Scholar 

  121. Fokin AV, Grebennikov VN, Manelis GB, Nazin GM (1993) Dokl Chem 332:247

    Google Scholar 

  122. Grebennikov VN, Manelis GB, Nazin GM, Fokin AV (1994) Izv Akad Nauk Ser Khim 336

    Google Scholar 

  123. Grebennikov VN, Manelis GB, Nazin GM, Fokin AV (1994) Russ Chem Bull 43:315

    Google Scholar 

  124. Manelis GB, Nazin GM, Rubtsov YuI, Strunin VA (2003) Thermal decomposition and combustion of explosives and propellants. Taylor & Francis, London, chap 7

    Google Scholar 

  125. Park J, Chakraborty D, Jamindar S, Xia WS, Lin MC, Bedford C (2002) Thermochim Acta 384:101

    CAS  Google Scholar 

  126. Nazin GM, Prokudin VG, Manelis GB (2000) Izv Akad Nauk Ser Khim 231

    Google Scholar 

  127. Nazin GM, Prokudin VG, Manelis GB (2000) Russ Chem Bull 49:234

    CAS  Google Scholar 

  128. Dubikhin VV, Karnauh GE, Lagodzinskaya GV, Matveev VG, Nazin GM, Prokudin GV (2003) 34th International Annual Conference of ICT, 24–27 June 2003, Karlsruhe, Germany

    Google Scholar 

  129. Matveev VG, Nazin GM (2003) Kinet Catal 44:735

    CAS  Google Scholar 

  130. Chapman RD, Kreutzberger CB, Welker MF (1995) Difluoramino energetic materials. JANNAF novel ingredients for liquid and solid propellants specialist session, 4 April 1995, Pasadena, CA; http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=A451187 , last visited: 20 April 2007

  131. Chapman RD, Yee RY, Gilardi RD, Pinkerton AA (1996) Chemistry of difluoramine derivatives. 15th annual working group institute on synthesis of high energy density materials, 12–13 June 1996,Picatinny Arsenal, NJ; http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=A451459 , last visited: 20 April 2007

  132. Haiges R, Wagner R, Boatz JA, Yousufuddin M, Etzkorn M, Prakash GKS, Christe KO, Chapman RD, Welker MF, Kreutzberger CB (2006) Angew Chem Int Ed Engl 45:5179

    CAS  Google Scholar 

  133. Singh RP, Shreeve JM (2001) Chem Commun, p 1196

    Google Scholar 

  134. Graham WH, Parker CO (1963) J Org Chem 28:850

    CAS  Google Scholar 

  135. Fokin AV, Kosyrev YuM, Shevchenko VI, Potarina TM (1971) USSR Patent 299505

    Google Scholar 

  136. Fokin AV, Kosyrev YuM, Shevchenko VI, Potarina TM (1971) Chem Abstr 75:76265

    Google Scholar 

  137. Prakash GKS, Etzkorn M, Olah GA, Christe KO, Schneider S, Vij A (2002) Chem Commun, p 1712

    Google Scholar 

  138. Fokin AV, Kosyrev YuM, Makarov VA, Novoselov NP (1969) Dokl Akad Nauk SSSR 186:112

    CAS  Google Scholar 

  139. Fokin AV, Kosyrev YuM, Makarov VA, Novoselov NP (1969) Proc Acad Sci USSR Chem Sect 186:350

    Google Scholar 

  140. Chapman RD, Davis MC, Gilardi R (2003) Synth Commun 33:4173

    CAS  Google Scholar 

  141. Inel Y (1976) Bogazici Univ Derg Temel Bilimler Kim 4/5:9

    Google Scholar 

  142. Inel Y (1977) Chem Abstr 92:170261

    Google Scholar 

  143. Leroy G, Sana M, Wilante C, Peeters D, Bourasseau S (1989) J Mol Struct: THEOCHEM 187:251

    Google Scholar 

  144. Sana M, Leroy G, Wilante C, Peeters D, Bourasseau S (1991) J Energ Mater 9:137

    CAS  Google Scholar 

  145. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440

    CAS  Google Scholar 

  146. Haeberlein M, Murray JS, Brinck T, Politzer P (1992) Can J Chem 70:2209

    CAS  Google Scholar 

  147. Politzer P, Lane P, Grice ME, Concha MC, Redfern PC (1995) J Mol Struct: THEOCHEM 338:249

    Google Scholar 

  148. Politzer P, Lane P, Sjoberg P, Grice ME, Shechter H (1995) Struct Chem 6:217

    CAS  Google Scholar 

  149. Politzer P, Murray JS, Grice ME (1996) Mater Res Soc Symp Proc 418:55

    CAS  Google Scholar 

  150. Politzer P, Lane P (1996) J Mol Struct: THEOCHEM 388:51

    CAS  Google Scholar 

  151. Politzer P, Lane P, Grice ME (1996) J Mol Struct: THEOCHEM 365:89

    CAS  Google Scholar 

  152. Politzer P, Murray JS, Seminario JM, Lane P, Grice ME, Concha MC (2001) J Mol Struct: THEOCHEM 573:1

    CAS  Google Scholar 

  153. Politzer P, Lane P, Concha MC (2003) Computational approaches to heats of formation. In: Politzer P, Murray JS (eds) Energetic materials, part 1. Decomposition, crystal and molecular properties, chap 9. Elsevier, Amsterdam

    Google Scholar 

  154. Ju X-H, Li Y-M, Xiao H-M (2005) J Phys Chem A 109:934

    CAS  Google Scholar 

  155. Ju X-H, Ji G-F, Xiao H-M (2006) Chem Phys 326:395

    CAS  Google Scholar 

  156. Fan X-W, Ju X-H, Xiao H-M, Qiu L (2006) J Mol Struct: THEOCHEM 801:55

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Chapman .

Editor information

T. M. Klapötke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapman, R.D. (2007). Organic Difluoramine Derivatives. In: Klapötke, T.M. (eds) High Energy Density Materials. Structure and Bonding, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2007_058

Download citation

Publish with us

Policies and ethics