Skip to main content

Synthesis of Single-molecule Magnets Using Metallocyanates

  • Chapter
  • First Online:
Single-Molecule Magnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 122))

Abstract

Cyanometallate building blocks are inert and stable molecules that may act as ligands towards metal complexes. A stepwise approach allows preparing polynuclear complexes with predictable architectures. The knowledge of the nature of the exchange interaction through the cyanide bridge enables chemists to reasonably predict the spin of the ground state and in some cases the magnitude of the magnetic anisotropy. During the last 10 years, hexacyanometallates led to the discovery of polynuclear complexes that behave as single-molecule magnets (SMMs). For such low-nuclearity complexes, these SMMs have a relatively high anisotropy barrier in comparison to other metal–oxo-based clusters with larger spin ground state. On the other hand, the introduction of tricyanometallates led to different architectures in complexes with higher nuclearity (up to 14). Chemists took advantage of the step by step approach to introduce within the polynuclear complexes metal ions of the first or second transition metal series that have large spin–orbit coupling. All the cyanometallate clusters with such ions have been shown to behave as SMMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lis T (1980) Acta Crystallogr B 36:2042

    Article  Google Scholar 

  2. Caneschi A, Gatteschi D, Sessoli R, Barra AL, Brunel LC, Guillot M (1991) J Am Chem Soc 113:5873

    Article  CAS  Google Scholar 

  3. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141

    Article  CAS  Google Scholar 

  4. Sessoli R, Hui-Lien Tsai AR, Schake AR, Sheyi Wang JB, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) J Am Chem Soc 115:1804

    Article  CAS  Google Scholar 

  5. Barra AL, Gatteschi D, Sessoli R (2000) Chem Eur J 6:1608

    Article  CAS  Google Scholar 

  6. (a) Blake AJ, Grant CM, Parsons S, Rawson JM (1994) J Chem Soc Chem Commun 2363; (b) Cadiou C, Murrie M, Paulsen C, Villar V, Wernsdorfer W, Winpenny REP (2001) Chem Commun 2666

    Google Scholar 

  7. Brechin EK, Boskovic C, Wernsdorfer W, Yoo J, Yamagushi A, Sañudo EC, Concolino TR, Rheingold AL, Ishimoto H, Hendrickson DN, Christou G (2002) J Am Chem Soc 33:9711

    Google Scholar 

  8. Oshio H, Hoshino N, Ito T (2000) J Am Chem Soc 122:12 602

    Article  CAS  Google Scholar 

  9. Winpenny REP (2002) J Chem Soc Dalton Trans 1

    Google Scholar 

  10. Murugesu M, Habrych M, Wernsdorfer W, Abboud KA, Christou G (2004) J Am Chem Soc 126:4766

    Article  CAS  Google Scholar 

  11. Maheswaran S, Chastanet G, Teat SJ, Mallah T, Sessoli R, Wernsdorfer W, Winpenny REP (2005) Angew Chem Int Ed 44:5044

    Article  CAS  Google Scholar 

  12. Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G (2004) Angew Chem Int Ed 116:2169

    Article  Google Scholar 

  13. Soler M, Rumberger E, Folting K, Hendrickson DN, Christou G (2001) Polyhedron 20:1365

    Article  CAS  Google Scholar 

  14. Low DM, Jones LF, Bell A, Brechin EK, Mallah T, Riviére E, Teat SJ, Mc Innes EJL (2003) Angew Chem Int Ed 42:3781

    Article  CAS  Google Scholar 

  15. Yu P, Journaux Y, Kahn O (1989) Inorg Chem 28:100

    Article  Google Scholar 

  16. Weihe H, Güdel HU (2000) Comments Inorg Chem 22:75

    Article  CAS  Google Scholar 

  17. Scuiller A, Mallah T, Verdaguer M, Nivorozkhin A, Tholence JL, Veillet P (1996) New J Chem 20:1

    CAS  Google Scholar 

  18. Parker RJ, Spiccia L, Berry KJ, Fallon GD, Moubaraki B, Murray KS (2001) Chem Commun 333

    Google Scholar 

  19. Mallah T, Ferlay S, Auberger C, Hélary C, L'hermite F, Ouahès R, Vaissermann J, Verdaguer M, Veillet P (1995) Mol Cryst Liq Cryst 273:141

    Article  Google Scholar 

  20. Colacio E, Dominguez-Vera JM, Ghazi M, Kivekäs R, Klinga M, Moreno JM (1998) Chem Commun 1071

    Google Scholar 

  21. Marvilliers A, Mallah T, Rivière E, Parsons S, Munoz C, Vostrikova KE (1999) Mol Cryst Liq Cryst 335:483

    Article  Google Scholar 

  22. Lescouëzec R, Vaissermann J, Lloret F, Julve M, Verdaguer M (2002) Inorg Chem 41:5943

    Article  CAS  Google Scholar 

  23. Toma L, Toma LM, Lescouëzec R, Armentano D, De Munno G, Andruh M, Cano J, Lloret F, Julve M (2005) J Chem Soc Dalton Trans 1357

    Google Scholar 

  24. Mallah T, Auberger C, Verdaguer M, Veillet P (1995) Chem Commun 61

    Google Scholar 

  25. Mallah T, Marvilliers A, Miller JS, Drillon M (2001) Magnetism: Molecules to Materials II. Wiley, Weinheim

    Google Scholar 

  26. Marvaud V, Decroix C, Scuiller A, Guyard-Duhayon C, Vaissermann J, Gonnet F, Verdaguer M (2003) Chem Eur J 9:1678

    Google Scholar 

  27. Choi HJ, Sokol JJ, Long JR (2004) J Phys Chem Solids 65:839

    Article  CAS  Google Scholar 

  28. Shen X, Li B, Zou J, Hu H, Xu Z (2003) J Mol Struct 325:657

    Google Scholar 

  29. Van Landenberg K, Batten SR, Berry KJ, Hockless DCR, Moubaraki B, Murray KS (1997) Inorg Chem 36:5006

    Article  Google Scholar 

  30. Berlinguette CP, Vaughn D, Cañada-Vilalta C, Galán-Mascarós JR, Dunbar KR (2003) Angew Chem Int Ed 42:1523

    Article  CAS  Google Scholar 

  31. Miyasaka H, Takahashi H, Madanbashi T, Suguira K, Clérac R, Nojiri H (2005) Inorg Chem 44:5969

    Article  CAS  Google Scholar 

  32. Miyasaka H, Matsumoto N, Re N, Gallo E, Floriani C (1997) Inorg Chem 36:670

    Article  CAS  Google Scholar 

  33. Choi HJ, Sokol JJ, Long JR (2004) Inorg Chem 43:1606

    Article  CAS  Google Scholar 

  34. Ferbnteanu M, Miyasaka H, Wernsdorfer W, Suguira K, Yamashita M, Coulon C, Clérac R (2005) J Am Chem Soc 127:3090

    Article  CAS  Google Scholar 

  35. Heinrich JL, Berseth PA, Long JR (1998) Chem Commun 1231

    Google Scholar 

  36. Berseth PA, Sokol JJ, Shores MP, Heinrich JL, Long JR (2000) J Am Chem Soc 122:9655

    Article  CAS  Google Scholar 

  37. Wang S, Zuo JL, Zhou HC, Choi HJ, Ke Y, Long JR, You XZ (2004) Angew Chem Int Ed 43:5940

    Article  CAS  Google Scholar 

  38. Schelter EJ, Prosvirin AV, Dunbar KR (2004) J Am Chem Soc 126:15 004

    Article  CAS  Google Scholar 

  39. Oshio H, Tamada O, Onodera H, Ito T, Ikoma T, Tero-Kubota S (1999) Inorg Chem 38:5686

    Article  CAS  Google Scholar 

  40. Li D, Parkin S, Wang G, Yee GT, Prosvirin AV, Holmes SM (2005) Inorg Chem 44:4903

    Article  CAS  Google Scholar 

  41. Sokol JJ, Hee AG, Long J (2002) J Am Chem Soc 124:7656

    Article  CAS  Google Scholar 

  42. The d n coefficients were calculated by R. Sessoli using the home-made software Genio based on the irreducible tensor operators (ITO) formalism as reported by Gatteschi and Bencini [Gatteschi D, Bencini A (1990) EPR of Exchange Coupled Systems (Springer, Berlin Heidelberg New York)]

    Google Scholar 

  43. The calculation of the total D tensor was performed by expressing the local tensors of each single ion in a common basis using adequate rotation matrices. Then the tensorial relation was applied and the resulting matrix diagonalized in order to obtain the D and E values and the orientation of the molecular tensor

    Google Scholar 

  44. Parker RJ, Hockless DCR, Moubaraki B, Murray KS, Spiccia L (1996) Chem Commun 2789

    Google Scholar 

  45. Marvilliers A, Pei Y, Cano Boquera J, Vostrikova KE, Paulsen C, Rivière E, Audière J-P, Mallah T (1999) Chem Commun 1951

    Google Scholar 

  46. Vostrikova KE, Luneau D, Wernsdorfer W, Rey P, Verdaguer M (2000) J Am Chem Soc 122:718

    Article  CAS  Google Scholar 

  47. Sokol JJ, Shores MP, Long JR (2001) Angew Chem Int Ed 40:236

    Article  CAS  Google Scholar 

  48. Oshio H, Yamamoto M, Hoshino N, Ito T (2001) Polyhedron 20:1621

    Article  CAS  Google Scholar 

  49. Oshio H, Yamamoto M, Ito T (2002) Inorg Chem 41:5817

    Article  CAS  Google Scholar 

  50. Berlinguette CP, Galán-Mascarós JR, Dunbar KR (2003) Inorg Chem 42:3416

    Article  CAS  Google Scholar 

  51. Berlinguette CP, Dunbar KR (2005) Chem Commun 2451

    Google Scholar 

  52. Kou HZ, Zhou BC, Si SF, Wang RJ (2004) Eur J Inorg Chem 401

    Google Scholar 

  53. Berlinguette CP, Dunbar KR (2005) Chem Commun 2451

    Google Scholar 

  54. Zhong ZJ, Seino H, Mizobe Y, Hidai M, Fujishima A, Ohkoshi S, Hashimoto K (2000) J Am Chem Soc 122:2952

    Article  CAS  Google Scholar 

  55. Larionova J, Gross M, Pilkington M, Andres H, Stoeckli-Evans H, Güdel HU, Descurtins S (2000) Angew Chem Int Ed 39:1605

    Article  CAS  Google Scholar 

  56. Rombaud G, Verelst M, Golhen S, Ouahab L, Mathonière C, Kahn O (2001) Inorg Chem 40:1151

    Article  CAS  Google Scholar 

  57. Herrera JM, Marvaud V, Verdaguer M, Marrot J, Kalisz M, Mathonière C (2003) Angew Chem Int Ed 43:5468

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the CNRS (Centre National de la Recherche Scientifique) and the European community for financial support (Contract No. MRTN-CT-2003-504880/RTN Network “QuEMolNa” and NoE “MAGMANET”). The authors are grateful to Roberta Sessoli for providing the necessary numerical information for the computation of the D tensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talal Mallah .

Editor information

Richard Winpenny

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Rebilly, JN., Mallah, T. Synthesis of Single-molecule Magnets Using Metallocyanates. In: Winpenny, R. (eds) Single-Molecule Magnets and Related Phenomena. Structure and Bonding, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_032

Download citation

Publish with us

Policies and ethics