Skip to main content

n-Body Decomposition Approach to the Calculation of Interaction Energies of Water Clusters

  • Chapter
  • First Online:
Intermolecular Forces and Clusters II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 116))

Abstract

A new methodology is proposed in which large basis set MP2-level calculations can be extended to water clusters with as many as 50 monomers. The computationally prohibitive scaling of traditional MP2 calculations is avoided by the use of an n-body decomposition (NBD) description of the cluster binding energy. The computational efficiency of the NBD approach is demonstrated by the application of the method in a Monte Carlo simulation of (H2O)6. Future development will further permit accurate MP2 calculations on clusters as large as (H2O)50.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xantheas SS, Burnham CJ, Harrison RJ (2002) J Chem Phys 116:1493

    Article  CAS  Google Scholar 

  2. Xantheas SS, Aprá E (2004) J Chem Phys 120:823

    Article  CAS  Google Scholar 

  3. Pedulla JM, Kim K, Jordan KD (1998) Chem Phys Lett 291:78

    Article  CAS  Google Scholar 

  4. Fanourgakis GS, Aprá E, Xantheas SS (2004) J Chem Phys 121:2655

    Article  CAS  Google Scholar 

  5. Burnham CJ, Xantheas SS (2002) J Chem Phys 116:1500

    CAS  Google Scholar 

  6. Burnham CJ, Xantheas SS (2002) J Chem Phys 116:1515

    Google Scholar 

  7. Ren P, Ponder JW (2003) J Phys Chem B 107:5933

    CAS  Google Scholar 

  8. Kaminski GA, Friesner RA, Zhou R (2003) J Comp Chem 24:267

    CAS  Google Scholar 

  9. Wales DJ, Hodges MP (1998) Chem Phys Lett 286:65

    Article  CAS  Google Scholar 

  10. Jorgensen WL, Chandrasekhar J, Madura J, Impey R, Klein ML J (1983) Chem Phys 79:926

    CAS  Google Scholar 

  11. Dang LX, Chang T (1997) J Chem Phys 106:8149

    Article  CAS  Google Scholar 

  12. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  14. Dunning Jr TH (1989) J Chem Phys 90:1007

    Google Scholar 

  15. Kendall RA, Dunning Jr TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  16. Weigend F, Häser M (1997) Theor Chem Acc 97:331

    CAS  Google Scholar 

  17. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Letters 294:143

    Article  CAS  Google Scholar 

  18. Pribble RN, Zwier TS (1994) Science 265:75

    CAS  Google Scholar 

  19. Huisken F, Kaloudis M, Kulcke A (1996) J Chem Phys 104:17

    Article  CAS  Google Scholar 

  20. Buck U, Ettischer I, Melzer M, Buch V, Sadlej J (1998) Phys Rev Lett 80:2578

    Article  CAS  Google Scholar 

  21. Brudermann J, Melzer M, Buck U, Kazimirski JK, Sadlej J, Bush V (1999) J Chem Phys 110:10649

    Article  CAS  Google Scholar 

  22. Nauta K, Miller RE (2000) Science 287:293

    Article  CAS  Google Scholar 

  23. Diken EG, Robertson WH, Johnson MA (2004) J Phys Chem A 108:64

    CAS  Google Scholar 

  24. Laasonen K, Parrinello M, Car R, Lee C, Vanderbilt D (1993) Chem Phys Lett 207:208

    Article  CAS  Google Scholar 

  25. Lee C, Chen H, Fitzgerald G (1994) J Chem Phys 101:4472

    CAS  Google Scholar 

  26. Kim K, Jordan KD (1994) J Phys Chem 98:10089

    CAS  Google Scholar 

  27. Xu X, Goddard III WA (2004) J Phys Chem A 108:2305

    CAS  Google Scholar 

  28. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  29. Kristyán S, Pulay P (1994) Chem Phys Lett 229:175

    Google Scholar 

  30. Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134

    Google Scholar 

  31. Pulay P (1983) Chem Phys Lett 100:151

    Article  CAS  Google Scholar 

  32. Pulay P, Saebø S (1986) Theor Chim Acta 69:357

    Article  CAS  Google Scholar 

  33. Saebø S, Pulay P (1987) J Chem Phys 86:914

    Google Scholar 

  34. Saebø S, Pulay P (1993) Annu Rev Phys Chem 44:213

    Google Scholar 

  35. Christie RA, Jordan KD (2005) Monte Carlo Simulations of the Finite Temperature Properties of (H2O)6. In: Dykstra C, Frenking G, Kim K, Scuseria G (eds) Theory and Applications of Computational Chemistry. Elsevier, New York, p 995–1009

    Google Scholar 

  36. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Google Scholar 

  37. Xantheas SS (1994) J Chem Phys 100:7523

    Article  CAS  Google Scholar 

  38. Christie RA, Jordan KD (2001) J Phys Chem A 105:7551

    Article  CAS  Google Scholar 

  39. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  40. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    CAS  Google Scholar 

  41. Clark T, Chandrasekhar J, Spitznagel GW, v R Schleyer P (1983) J Comp Chem 4:294

    CAS  Google Scholar 

  42. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  43. Tharrington A, Jordan KD (2003) J Phys Chem A 107:7380

    Article  CAS  Google Scholar 

  44. Ferrenberg AM, Swendsen RH (1988) Phys Rev Lett 61:2635

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Christie .

Editor information

D. J. Wales

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Christie, R.A., Jordan, K.D. n-Body Decomposition Approach to the Calculation of Interaction Energies of Water Clusters. In: Wales, D.J. (eds) Intermolecular Forces and Clusters II. Structure and Bonding, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_003

Download citation

Publish with us

Policies and ethics