Skip to main content

Quantitative Photoactivated Localization Microscopy of Membrane Receptor Oligomers

  • Chapter
  • First Online:
Fluorescence Spectroscopy and Microscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 20))

  • 710 Accesses

Abstract

Optical super-resolution microscopy allows the visualization of cellular structures with a spatial resolution of a few tens of nanometers and has revolutionized our understanding in cell biology. However, the spatial resolution achieved with to-date super-resolution microscopy methods in cells is not sufficient to optically resolve proteins within densely packed protein clusters, which themselves represent relevant functional assemblies in cells. Single-molecule localization microscopy (SMLM) offers an opportunity to retrieve this information by analyzing the kinetics of on-off-switching (“blinking”) observed in the fluorescence emission signatures of single fluorophores. We report the theoretical background of kinetics-based molecular quantification of SMLM data, discuss fluorescent probes and methods for protein labeling, and showcase applications in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DNA-PAINT:

DNA-based point accumulation for imaging in nanoscale topography

dSTORM:

Direct stochastic optical reconstruction microscopy

FCS:

Fluorescence correlation spectroscopy

FPALM :

Fluorescence photoactivated localization microscopy

FRET:

Förster resonance energy transfer

HGF:

Hepatocyte growth factor

InlB:

Internalin B

N&B:

Number and brightness analysis

paFP:

Photoactivatable fluorescent protein

PAINT:

Point accumulation for imaging in nanoscale topography

PALM:

Photoactivated localization microscopy

pcFP:

Photoconvertible fluorescent protein

PC-PALM:

Pair-correlation photoactivated localization microscopy

PLAD :

Preligand assembly domain

PSF:

Point spread function

QAFKA :

Quantitative algorithm for fluorescence kinetics analysis

qPAINT:

Quantitative point accumulation for imaging in nanoscale topography

qPALM:

Quantitative photoactivated localization microscopy

qSMLM:

Quantitative single-molecule localization microscopy

RTK:

Receptor tyrosine kinase

SMLM:

Single-molecule localization microscopy

STORM:

Stochastic optical reconstruction microscopy

TIRF:

Total internal reflection fluorescence

TLR4:

Toll-like receptor 4

TNFR1:

Tumor necrosis factor receptor 1

TNFα:

Tumor necrosis factor alpha

References

  1. Heilemann M (2010) Fluorescence microscopy beyond the diffraction limit. J Biotechnol 149(4):243–251

    CAS  Google Scholar 

  2. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, Jungmann R, Sauer M, Lakadamyali M, Zimmer C (2021) Single-molecule localization microscopy. Nat Rev Methods Primers. https://doi.org/10.1038/s43586-021-00038-x

  3. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem 47(33):6172–6176

    CAS  Google Scholar 

  4. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    CAS  PubMed Central  Google Scholar 

  5. Betzig E, Patterson GH, Rachid Sougrat O, Lindwasser W, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    CAS  Google Scholar 

  6. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    CAS  PubMed Central  Google Scholar 

  7. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci 103(50):18911–18916. https://doi.org/10.1073/pnas.0609643104

    Article  CAS  PubMed Central  Google Scholar 

  8. Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10(11):4756–4761

    CAS  Google Scholar 

  9. Sauer M, Heilemann M (2017) Single-molecule localization microscopy in eukaryotes. Chem Rev 117(11):7478–7509

    CAS  Google Scholar 

  10. Mortensen KI, Stirling Churchman L, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381

    CAS  PubMed Central  Google Scholar 

  11. van de Sebastian L, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J Biotechnol 149(4):260–266

    Google Scholar 

  12. Magrassi R, Scalisi S, Cella Zanacchi F (2019) Single-molecule localization to study cytoskeletal structures, membrane complexes, and mechanosensors. Biophys Rev 11(5):745–756

    CAS  PubMed Central  Google Scholar 

  13. Dietz MS, Heilemann M (2019) Optical super-resolution microscopy unravels the molecular composition of functional protein complexes. Nanoscale 11(39):17981–17991

    CAS  Google Scholar 

  14. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8(7):527–528

    CAS  Google Scholar 

  15. Avilov S, Berardozzi R, Gunewardene MS, Adam V, Hess ST, Bourgeois D (2014) In cellulo evaluation of phototransformation quantum yields in fluorescent proteins used as markers for single-molecule localization microscopy. PLoS One 9(6):e98362

    PubMed Central  Google Scholar 

  16. Zitter D, Elke DT, Mönkemöller V, Hugelier S, Beaudouin J, Adam V, Byrdin M, Van Meervelt L, Dedecker P, Bourgeois D (2019) Mechanistic investigation of mEos4b reveals a strategy to reduce track interruptions in sptPALM. Nat Methods 16(8):707–710

    Google Scholar 

  17. Fricke F, Beaudouin J, Eils R, Heilemann M (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci Rep 5(September):14072

    PubMed Central  Google Scholar 

  18. Hummer G, Fricke F, Heilemann M (2016) Model-independent counting of molecules in single-molecule localization microscopy. Mol Biol Cell 27(22):3637–3644

    CAS  PubMed Central  Google Scholar 

  19. Lee S-H, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci U S A 109(43):17436–17441

    CAS  PubMed Central  Google Scholar 

  20. Rollins GC, Shin JY, Bustamante C, Pressé S (2015) Stochastic approach to the molecular counting problem in superresolution microscopy. Proc Natl Acad Sci U S A 112(2):E110–E118

    CAS  Google Scholar 

  21. Baldering TN, Dietz MS, Gatterdam K, Karathanasis C, Wieneke R, Tampé R, Heilemann M (2019) Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM. Mol Biol Cell 30(12):1369–1376

    CAS  PubMed Central  Google Scholar 

  22. Krüger CL, Zeuner M-T, Cottrell GS, Widera D, Heilemann M (2017) Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Sci Signal 10(503). https://doi.org/10.1126/scisignal.aan1308

  23. Lehmann J, Jørgensen ME, Fratz S, Müller HM, Kusch J, Scherzer S, Navarro-Retamal C et al (2021) Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis. Curr Biol 31(16):3575–85.e9

    CAS  Google Scholar 

  24. Baldering TN, Karathanasis C, Harwardt M-LIE, Freund P, Meurer M, Rahm JV, Knop M, Dietz MS, Heilemann M (2021) CRISPR/Cas12a-mediated labeling of MET receptor enables quantitative single-molecule imaging of endogenous protein organization and dynamics. iScience 24(1):101895

    CAS  Google Scholar 

  25. Karathanasis C, Medler J, Fricke F, Smith S, Malkusch S, Widera D, Fulda S et al (2020) Single-molecule imaging reveals the oligomeric state of functional TNFα-induced plasma membrane TNFR1 clusters in cells. Sci Signal 13(614). https://doi.org/10.1126/scisignal.aax5647

  26. Weinelt N, Karathanasis C, Smith S, Medler J, Malkusch S, Fulda S, Wajant H, Heilemann M, van Wijk SJL (2021) Quantitative single-molecule imaging of TNFR1 reveals Zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-ĸB signaling. J Leukoc Biol 109(2):363–371

    CAS  Google Scholar 

  27. Khan AO, Simms VA, Pike JA, Thomas SG, Morgan NV (2017) CRISPR-Cas9 mediated labelling allows for single molecule imaging and resolution. Sci Rep 7(1):8450

    PubMed Central  Google Scholar 

  28. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133

    CAS  PubMed Central  Google Scholar 

  29. Paez-Segala MG, Sun MG, Shtengel G, Viswanathan S, Baird MA, Macklin JJ, Patel R et al (2015) Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 12(3):215–218. 4 p following 218

    CAS  PubMed Central  Google Scholar 

  30. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C, Salih A, Spindler K-D, Ulrich Nienhaus G (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101(45):15905–15910

    CAS  PubMed Central  Google Scholar 

  31. Zhang M, Chang H, Zhang Y, Junwei Y, Lijie W, Ji W, Chen J et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9(7):727–729. https://doi.org/10.1038/nmeth.2021

    Article  CAS  Google Scholar 

  32. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Using photoactivatable fluorescent protein Dendra2 to track protein movement. BioTechniques 42(5):553–563

    CAS  Google Scholar 

  33. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24(4):461–465

    CAS  Google Scholar 

  34. McEvoy AL, Hoi H, Bates M, Platonova E, Cranfill PJ, Baird MA, Davidson MW, Ewers H, Liphardt J, Campbell RE (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS One 7(12):e51314

    PubMed Central  Google Scholar 

  35. Wang S, Moffitt JR, Dempsey GT, Sunney Xie X, Zhuang X (2014) Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc Natl Acad Sci U S A 111(23):8452–8457

    CAS  PubMed Central  Google Scholar 

  36. Krüger C, Fricke F, Karathanasis C, Sebastian DMM, Hummer G, Heilemann M (2017) Molecular counting of membrane receptor subunits with single-molecule localization microscopy. In: Single molecule spectroscopy and superresolution imaging X, vol 10071. SPIE

    Google Scholar 

  37. Saguy A, Baldering TN, Weiss LE, Nehme E, Karathanasis C, Dietz MS, Heilemann M, Shechtman Y (2021) Automated analysis of fluorescence kinetics in single-molecule localization microscopy data reveals protein stoichiometry. J Phys Chem B 125(22):5716–5721

    CAS  Google Scholar 

  38. Baldering TN, Bullerjahn JT, Hummer G, Heilemann M, Malkusch S (2019) Molecule counts in complex oligomers with single-molecule localization microscopy. J Phys D Appl Phys 52(47):474002. https://doi.org/10.1088/1361-6463/ab3b65

    Article  CAS  Google Scholar 

  39. Karathanasis C, Fricke F, Hummer G, Heilemann M (2017) Molecule counts in localization microscopy with organic fluorophores. ChemPhysChem 18(8):942–948. https://doi.org/10.1002/cphc.201601425

    Article  CAS  Google Scholar 

  40. Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P, Verveer PJ, Heilemann M (2011) Chemically induced photoswitching of fluorescent probes – a general concept for super-resolution microscopy. Molecules 16(4):3106–3118. https://doi.org/10.3390/molecules16043106

    Article  CAS  PubMed Central  Google Scholar 

  41. Ting AT, Bertrand MJM (2016) More to life than NF-κB in TNFR1 signaling. Trends Immunol 37(8):535–545

    CAS  PubMed Central  Google Scholar 

  42. Kucka K, Wajant H (2020) Receptor oligomerization and its relevance for signaling by receptors of the tumor necrosis factor receptor superfamily. Front Cell Dev Biol 8:615141

    Google Scholar 

  43. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    CAS  PubMed Central  Google Scholar 

  44. Dietz MS, Haße D, Ferraris DM, Göhler A, Niemann HH, Heilemann M (2013) Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC Biophys 6(1):6

    CAS  PubMed Central  Google Scholar 

  45. Hofman EG, Bader AN, Voortman J, van den Heuvel DJ, Sigismund S, Verkleij AJ, Gerritsen HC, Henegouwen PMVB (2010) Ligand-induced EGF receptor oligomerization is kinase-dependent and enhances internalization. J Biol Chem 285(50):39481–39489

    CAS  PubMed Central  Google Scholar 

  46. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925

    CAS  Google Scholar 

  47. Fueller J, Herbst K, Meurer M, Gubicza K, Kurtulmus B, Knopf JD, Kirrmaier D et al (2020) CRISPR-Cas12a–assisted PCR tagging of mammalian genes. J Cell Biol 219(6). https://doi.org/10.1083/jcb.201910210

  48. Turkowyd B, Balinovic A, Virant D, Gölz HG, Carnero FC, Endesfelder M, Bourgeois D, Endesfelder U (2017) A general mechanism of photoconversion of green-to-red fluorescent proteins based on blue and infrared light reduces phototoxicity in live-cell single-molecule imaging. Angew Chem 56(38):11634–11639

    CAS  Google Scholar 

  49. Nanguneri S, Flottmann B, Herrmannsdörfer F, Thomas K, Heilemann M (2014) Single-molecule super-resolution imaging by tryptophan-quenching-induced photoswitching of phalloidin-fluorophore conjugates. Microsc Res Tech 77(7):510–516. https://doi.org/10.1002/jemt.22349

    Article  CAS  Google Scholar 

  50. Keppler A, Kindermann M, Gendreizig S, Pick H, Vogel H, Johnsson K (2004) Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods. https://doi.org/10.1016/j.ymeth.2003.10.007

  51. Möller J, Isbilir A, Sungkaworn T, Osberg B, Karathanasis C, Sunkara V, Grushevskyi EO et al (2020) Single-molecule analysis reveals agonist-specific dimer formation of μ-opioid receptors. Nat Chem Biol 16(9):946–954

    Google Scholar 

  52. Zanacchi FC, Manzo C, Alvarez AS, Derr ND, Garcia-Parajo MF, Lakadamyali M (2017) A DNA origami platform for quantifying protein copy number in super-resolution. Nat Methods 14(8):789–792

    CAS  PubMed Central  Google Scholar 

  53. Baker MAB, Nieves DJ, Hilzenrat G, Berengut JF, Gaus K, Lee LK (2019) Stoichiometric quantification of spatially dense assemblies with qPAINT. Nanoscale 11(26):12460–12464

    CAS  Google Scholar 

  54. Jungmann R, Avendaño MS, Dai M, Woehrstein JB, Agasti SS, Feiger Z, Rodal A, Yin P (2016) Quantitative super-resolution imaging with qPAINT. Nat Methods 13(5):439–442

    CAS  PubMed Central  Google Scholar 

  55. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975

    CAS  PubMed Central  Google Scholar 

  56. Digman MA, Dalal R, Horwitz AF, Gratton E (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94(6):2320–2332

    CAS  Google Scholar 

  57. Papini C, Royer CA (2018) Scanning number and brightness yields absolute protein concentrations in live cells: a crucial parameter controlling functional bio-molecular interaction networks. Biophys Rev 10(1):87–96. https://doi.org/10.1007/s12551-017-0394-z

    Article  CAS  PubMed Central  Google Scholar 

  58. Kitamura A, Kubota H (2010) Amyloid oligomers: dynamics and toxicity in the cytosol and nucleus. FEBS J 277(6):1369–1379

    CAS  Google Scholar 

  59. Takahashi Y, Yuma Okamoto H, Popiel A, Fujikake N, Toda T, Kinjo M, Nagai Y (2007) Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy. J Biol Chem 282(33):24039–24048

    CAS  Google Scholar 

  60. Krieger JW, Singh AP, Bag N, Garbe CS, Saunders TE, Langowski J, Wohland T (2015) Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc 10(12):1948–1974

    CAS  Google Scholar 

  61. Sankaran J, Balasubramanian H, Tang WH, Ng XW, Röllin A, Wohland T (2021) Simultaneous spatiotemporal super-resolution and multi-parametric fluorescence microscopy. Nat Commun 12(1):1748

    CAS  PubMed Central  Google Scholar 

  62. Bader AN, Hofman EG, Voortman J, Henegouwen PMVB, Gerritsen HC (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97(9):2613–2622

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding by the German Science Foundation (grants SFB 902, SFB 1177, HE 6166/17-1, GRK 2566 project number 414985841), LOEWE (Frankfurt Cancer Insititute), and the Volkswagen Foundation (grant 91067-9). We thank all past and present members of the Single-Molecule Biophysics group and our collaborators for their valuable contributions to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Heilemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dietz, M.S., Heilemann, M. (2022). Quantitative Photoactivated Localization Microscopy of Membrane Receptor Oligomers. In: Šachl, R., Amaro, M. (eds) Fluorescence Spectroscopy and Microscopy in Biology. Springer Series on Fluorescence, vol 20. Springer, Cham. https://doi.org/10.1007/4243_2022_37

Download citation

Publish with us

Policies and ethics