Skip to main content

STED and RESOLFT Fluorescent Nanoscopy

  • Chapter
  • First Online:
Fluorescence Spectroscopy and Microscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 20))

  • 792 Accesses

Abstract

Fluorescence microscopy is an invaluable tool in cell biology to investigate the functional, structural, and dynamical properties of biological specimens. For a long time, the resolution of fluorescence microscopes was thought to be fundamentally limited by diffraction. According to Abbe’s law of diffraction, published in 1873, the smallest spatial details accessible with visible light are defined only by the optics of the microscope, i.e., numerical aperture and the wavelength of the light. However, the last 25 years of research have shown that it is possible to investigate even smaller structures using only visible light. This chapter covers the basic principles of coordinate-targeted switching techniques, a family of super-resolution microscopy methods. Furthermore, it provides an overview of the state-of-the-art strategies to push their ability toward faster and more efficient imaging of living cells and tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9(1):413–468

    Google Scholar 

  2. Hell SW, Kroug M (1995) Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B Lasers Opt 60:495–497

    Google Scholar 

  3. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    CAS  PubMed  Google Scholar 

  4. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    CAS  PubMed  Google Scholar 

  5. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  PubMed  Google Scholar 

  6. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    CAS  PubMed  Google Scholar 

  7. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  PubMed  Google Scholar 

  8. Hell SW, Wichman J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    CAS  PubMed  Google Scholar 

  9. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci 97:8206–8210

    CAS  PubMed  Google Scholar 

  10. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci 102:17565–17569

    CAS  PubMed  Google Scholar 

  11. Grotjohann T et al (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208

    CAS  PubMed  Google Scholar 

  12. Grotjohann T et al (2012) rsEGFP2 enables fast RESOLFT nanoscopy of living cells. eLife 2012:1–14

    Google Scholar 

  13. Dreier J et al (2019) Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo. Nat Commun 10:556

    PubMed  Google Scholar 

  14. Heine J et al (2017) Adaptive-illumination STED nanoscopy. Proc Natl Acad Sci 114:9797–9802

    CAS  PubMed  Google Scholar 

  15. Sahl SJ, Schönle A, Hell SW (2019) Fluorescence microscopy with nanometer resolution: nanoscale resolution in far-field fluorescence microscopy. In: Hawkes PW, Spence JCH (eds) Springer handbook of microscopy. Springer, pp 1089–1143. https://doi.org/10.1007/978-3-030-00069-1_22

    Chapter  Google Scholar 

  16. Wang L, Frei MS, Salim A, Johnsson K (2019) Small-molecule fluorescent probes for live-cell super-resolution microscopy. J Am Chem Soc 141:2770–2781

    CAS  PubMed  Google Scholar 

  17. Stockhammer A, Bottanelli F (2021) Appreciating the small things in life: STED microscopy in living cells. J Phys D Appl Phys 54:033001

    CAS  Google Scholar 

  18. Jeong S, Widengren J, Lee J-C (2021) Fluorescent probes for STED optical nanoscopy. Nano 12:21

    Google Scholar 

  19. Bordenave MD, Balzarotti F, Stefani FD, Hell SW (2016) STED nanoscopy with wavelengths at the emission maximum. J Phys D Appl Phys 49:365102

    Google Scholar 

  20. Vicidomini G, Moneron G, Eggeling C, Rittweger E, Hell SW (2012) STED with wavelengths closer to the emission maximum. Opt Express 20:5225

    CAS  PubMed  Google Scholar 

  21. Hotta J et al (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132:5021–5023

    CAS  PubMed  Google Scholar 

  22. Vicidomini G, Bianchini P, Diaspro A (2018) STED super-resolved microscopy. Nat Methods 15:173–182

    CAS  PubMed  Google Scholar 

  23. Zheng Q, Lavis LD (2017) Development of photostable fluorophores for molecular imaging. Curr Opin Chem Biol 39:32–38

    CAS  PubMed  Google Scholar 

  24. Tønnesen J, Nadrigny F, Willig KI, Wedlich-Söldner R, Nägerl UV (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101:2545–2552

    PubMed  Google Scholar 

  25. Matlashov ME et al (2020) A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat Commun 11:1–12

    Google Scholar 

  26. Willig KI, Stiel AC, Brakemann T, Jakobs S, Hell SW (2011) Dual-label STED nanoscopy of living cells using photochromism. Nano Lett 11:3970–3973

    CAS  PubMed  Google Scholar 

  27. Han KY et al (2009) Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett 9:3323–3329

    CAS  PubMed  Google Scholar 

  28. Lesoine MD et al (2013) Subdiffraction, luminescence-depletion imaging of isolated, giant, CdSe/CdS nanocrystal quantum dots. J Phys Chem C 117:3662–3667

    CAS  Google Scholar 

  29. Liu Y et al (2017) Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543:229–233

    CAS  PubMed  Google Scholar 

  30. Tosheva KL, Yuan Y, Matos Pereira P, Culley S, Henriques R (2020) Between life and death: strategies to reduce phototoxicity in super-resolution microscopy. J Phys D Appl Phys 53:163001

    CAS  PubMed  Google Scholar 

  31. Wäldchen S, Lehmann J, Klein T, van de Linde S, Sauer M (2015) Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 5:15348

    PubMed  Google Scholar 

  32. Erdmann RS et al (2019) Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags. Cell Chem Biol 26:584–592.e6

    CAS  PubMed  Google Scholar 

  33. Keppler A et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    CAS  PubMed  Google Scholar 

  34. Los GV et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    CAS  PubMed  Google Scholar 

  35. Gautier A et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    CAS  PubMed  Google Scholar 

  36. Arsić A, Hagemann C, Stajković N, Schubert T, Nikić-Spiegel I (2022) Minimal genetically encoded tags for fluorescent protein labeling in living neurons. Nat Commun 13:314

    PubMed  Google Scholar 

  37. Bottanelli F et al (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7:1–5

    Google Scholar 

  38. Moneron G et al (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18:1302

    CAS  PubMed  Google Scholar 

  39. Schneider J et al (2015) Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat Methods 12:827–830

    CAS  PubMed  Google Scholar 

  40. Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV (2014) Photocontrollable fluorescent proteins for superresolution imaging. Annu Rev Biophys 43:303–329

    CAS  PubMed  Google Scholar 

  41. Nienhaus K, Nienhaus GU (2016) Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. J Phys Condens Matter 28:443001

    PubMed  Google Scholar 

  42. Stiel AC et al (2007) 1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42

    CAS  PubMed  Google Scholar 

  43. Duwé S et al (2015) Expression-enhanced fluorescent proteins based on enhanced green fluorescent protein for super-resolution microscopy. ACS Nano 9:9528–9541

    PubMed  Google Scholar 

  44. El Khatib M, Martins A, Bourgeois D, Colletier JP, Adam V (2016) Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Sci Rep 6:1–12

    Google Scholar 

  45. Wang S et al (2018) GMars-T enabling multimodal subdiffraction structural and functional fluorescence imaging in live cells. Anal Chem 90:6626–6634

    CAS  PubMed  Google Scholar 

  46. Wang S et al (2016) GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy. ACS Nano 10:9136–9144

    CAS  PubMed  Google Scholar 

  47. Shinoda H et al (2018) Acid-tolerant monomeric GFP from Olindias formosa. Cell Chem Biol 25:330–338.e7

    CAS  PubMed  Google Scholar 

  48. Gregor C et al (2018) Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA. Sci Rep 8:2724

    PubMed  Google Scholar 

  49. Andresen M et al (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26:1035–1040

    CAS  PubMed  Google Scholar 

  50. Tiwari DK et al (2015) A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy. Nat Methods 12:515–518

    CAS  PubMed  Google Scholar 

  51. Konen T et al (2021) The positive switching fluorescent protein Padron2 enables live-cell reversible saturable optical linear fluorescence transitions (RESOLFT) nanoscopy without sequential illumination steps. ACS Nano 15:9509–9521

    CAS  PubMed  Google Scholar 

  52. Jensen NA et al (2014) Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein dreiklang. ChemPhysChem 15:756–762

    CAS  PubMed  Google Scholar 

  53. Brakemann T et al (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29:942–950

    CAS  PubMed  Google Scholar 

  54. Lavoie-Cardinal F et al (2014) Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins. ChemPhysChem 15:655–663

    CAS  PubMed  Google Scholar 

  55. Pennacchietti F et al (2018) Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy. Nat Methods 15:601–604

    CAS  PubMed  Google Scholar 

  56. Kwon J et al (2015) RESOLFT nanoscopy with photoswitchable organic fluorophores. Sci Rep 5:1–8

    Google Scholar 

  57. Nevskyi O et al (2018) Fluorescent diarylethene photoswitches—a universal tool for super-resolution microscopy in nanostructured materials. Small 14:1–12

    Google Scholar 

  58. Uno K et al (2021) Turn-on mode diarylethenes for bioconjugation and fluorescence microscopy of cellular structures. Proc Natl Acad Sci 118:e2100165118

    CAS  PubMed  Google Scholar 

  59. Roubinet B et al (2016) Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angew Chem Int Ed 55:15429–15433

    CAS  Google Scholar 

  60. Frawley AT et al (2020) Super-resolution RESOLFT microscopy of lipid bilayers using a fluorophore-switch dyad. Chem Sci 11:8955–8960

    CAS  PubMed  Google Scholar 

  61. Staudt T et al (2011) Far-field optical nanoscopy with reduced number of state transition cycles. Opt Express 19:5644

    PubMed  Google Scholar 

  62. Göttfert F et al (2017) Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc Natl Acad Sci 114:2125–2130

    PubMed  Google Scholar 

  63. Vinçon B, Geisler C, Egner A (2020) Pixel hopping enables fast STED nanoscopy at low light dose. Opt Express 28:4516

    PubMed  Google Scholar 

  64. Krüger J-R, Keller-Findeisen J, Geisler C, Egner A (2020) Tomographic STED microscopy. Biomed Opt Express 11:3139

    PubMed  Google Scholar 

  65. Vicidomini G et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573

    CAS  PubMed  Google Scholar 

  66. Lanzanò L et al (2015) Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat Commun 6:6701

    PubMed  Google Scholar 

  67. Tortarolo G et al (2019) Photon-separation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale 11:1754–1761

    CAS  PubMed  Google Scholar 

  68. Wang L et al (2018) Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach. Nanoscale 10:16252–16260

    CAS  PubMed  Google Scholar 

  69. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci 103:18911–18916

    CAS  PubMed  Google Scholar 

  70. Spahn C, Grimm JB, Lavis LD, Lampe M, Heilemann M (2019) Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett 19:500–505

    CAS  PubMed  Google Scholar 

  71. Urban NT, Willig KI, Hell SW, Nägerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101:1277–1284

    CAS  PubMed  Google Scholar 

  72. Tønnesen J, Inavalli VVGK, Nägerl UV (2018) Super-resolution imaging of the extracellular space in living brain tissue. Cell 172:1108–1121.e15

    PubMed  Google Scholar 

  73. Yang B, Przybilla F, Mestre M, Trebbia J-B, Lounis B (2014) Large parallelization of STED nanoscopy using optical lattices. Opt Express 22:5581

    PubMed  Google Scholar 

  74. Bingen P, Reuss M, Engelhardt J, Hell SW (2011) Parallelized STED fluorescence nanoscopy. Opt Express 19:23716–23716

    CAS  PubMed  Google Scholar 

  75. Bergermann F, Alber L, Sahl SJ, Engelhardt J, Hell SW (2015) 2000-fold parallelized dual-color STED fluorescence nanoscopy. Opt Express 23:211–211

    PubMed  Google Scholar 

  76. Chmyrov A et al (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10:737–740

    CAS  PubMed  Google Scholar 

  77. Chmyrov A et al (2017) Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy. Sci Rep 7:44619

    CAS  PubMed  Google Scholar 

  78. Masullo LA et al (2018) Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems. Nat Commun 9:1–9

    CAS  Google Scholar 

  79. Bodén A et al (2021) Volumetric live cell imaging with three-dimensional parallelized RESOLFT microscopy. Nat Biotechnol 39(5):609–618. https://doi.org/10.1038/s41587-020-00779-2

    Article  CAS  PubMed  Google Scholar 

  80. Rego EH et al (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109:1–9

    Google Scholar 

  81. Curdt F et al (2015) isoSTED nanoscopy with intrinsic beam alignment. Opt Express 23:30891

    PubMed  Google Scholar 

  82. Siegmund R, Werner F, Jakobs S, Geisler C, Egner A (2021) isoSTED microscopy with water-immersion lenses and background reduction. Biophys J 120:3303–3314

    CAS  PubMed  Google Scholar 

  83. Böhm U, Hell SW, Schmidt R (2016) 4Pi-RESOLFT nanoscopy. Nat Commun 7:10504

    PubMed  Google Scholar 

  84. Harke B, Ullal CK, Keller J, Hell SW (2008) Three-dimensional nanoscopy of colloidal crystals. Nano Lett 8:1309–1313

    CAS  PubMed  Google Scholar 

  85. Bond C, Santiago-Ruiz AN, Tang Q, Lakadamyali M (2022) Technological advances in super-resolution microscopy to study cellular processes. Mol Cell 82:315–332

    CAS  PubMed  Google Scholar 

  86. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    CAS  PubMed  Google Scholar 

  87. Maglione M, Sigrist SJ (2013) Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16:790–797

    CAS  PubMed  Google Scholar 

  88. Kilian N et al (2018) Assessing photodamage in live-cell STED microscopy. Nat Methods 15:755–756

    CAS  PubMed  Google Scholar 

  89. Schnorrenberg S et al (2016) In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster. elife 5:e15567

    PubMed  Google Scholar 

  90. Göttfert F et al (2017) Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc Natl Acad Sci 114:2125–2130

    PubMed  Google Scholar 

  91. Alvelid J, Testa I (2020) Stable stimulated emission depletion imaging of extended sample regions. J Phys D Appl Phys 53:24001

    Google Scholar 

  92. Willig KI, Wegner W, Müller A, Clavet-Fournier V, Steffens H (2021) Multi-label in vivo STED microscopy by parallelized switching of reversibly switchable fluorescent proteins. Cell Rep 35:109192

    CAS  PubMed  Google Scholar 

  93. Testa I, D’Este E, Urban NT, Balzarotti F, Hell SW (2015) Dual channel RESOLFT nanoscopy by using fluorescent state kinetics. Nano Lett 15:103–106

    CAS  PubMed  Google Scholar 

  94. Valenta H et al (2021) Separation of spectrally overlapping fluorophores using intra-exposure excitation modulation. Biophys Rep 1:100026

    CAS  Google Scholar 

  95. Mishra K et al (2022) Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat Biotechnol 40(4):598–605. https://doi.org/10.1038/s41587-021-01100-5

    Article  CAS  PubMed  Google Scholar 

  96. Gielen V et al (2020) Absolute measurement of cellular activities using photochromic single-fluorophore biosensors. http://biorxiv.org/lookup/doi/10.1101/2020.10.29.360214. https://doi.org/10.1101/2020.10.29.360214

  97. Seidel ZP, Wang JCK, Riegler J, York AG, Ingaramo M (2021) Relaxation sensors. Zenodo. https://doi.org/10.5281/zenodo.5810930

    Book  Google Scholar 

  98. Balzarotti F et al (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355(6325):606–612

    CAS  PubMed  Google Scholar 

  99. Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW (2018) MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc Natl Acad Sci 115:6117–6122

    CAS  PubMed  Google Scholar 

  100. Gwosch KC et al (2020) MINFLUX nanoscopy delivers multicolor nanometer 3D-resolution in (living) cells. Nat Methods 17(2):217–224. https://doi.org/10.1101/734251

    Article  CAS  PubMed  Google Scholar 

  101. Cnossen J et al (2020) Localization microscopy at doubled precision with patterned illumination. Nat Methods 17(1):59–63. https://doi.org/10.1101/554337

    Article  CAS  PubMed  Google Scholar 

  102. Reymond L et al (2019) SIMPLE: structured illumination based point localization estimator with enhanced precision. Opt Express 27:24578

    CAS  PubMed  Google Scholar 

  103. Jouchet P et al (2021) Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat Photonics 15:297–304

    CAS  Google Scholar 

  104. Gu L et al (2019) Molecular resolution imaging by repetitive optical selective exposure. Nat Methods 16:1114–1118

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Testa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bodén, A., Pennacchietti, F., Testa, I. (2022). STED and RESOLFT Fluorescent Nanoscopy. In: Šachl, R., Amaro, M. (eds) Fluorescence Spectroscopy and Microscopy in Biology. Springer Series on Fluorescence, vol 20. Springer, Cham. https://doi.org/10.1007/4243_2022_35

Download citation

Publish with us

Policies and ethics