Skip to main content

Principles of Fluorescence Correlation and Dual-Color Cross-Correlation Spectroscopy

  • Chapter
  • First Online:
Fluorescence Spectroscopy and Microscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 20))

  • 732 Accesses

Abstract

Fluorescence Correlation Spectroscopy (FCS) is a non-invasive, highly sensitive technique for measuring the diffusive and photophysical properties of fluorescent species as well as their interactions. All of this information needs to be reliably extracted from the fluctuating fluorescence signal and interpreted in a theoretical framework. In this chapter, we describe the derivation of the basic equations governing FCS correlation curves. By pointing out their limitations and the underlying approximations and assumptions we hope to facilitate applications and the development of more elaborate models for more complex systems. Two detection channels are included to accommodate dual-color Fluorescence Cross-Correlation Spectroscopy. Moreover, we provide a generalized description for the separation of spatial movement and intramolecular change, taking translational diffusion (changes in position), rotational diffusion (changes in orientation) and fluorescence blinking (changes in the quantum mechanical state) into account. Since, experimentally, particles are often labeled with multiple fluorophores, besides multiple dynamics and multiple species of particles, multiple fluorophores per particle are also part of the description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708

    Article  CAS  Google Scholar 

  2. Elson EL, Webb WW (1975) Concentration correlation spectroscopy – new biophysical probe based on occupation number fluctuations. Annu Rev Biophys Bioeng 4:311–334

    Article  CAS  PubMed  Google Scholar 

  3. Bacia K, Haustein E, Schwille P (2014) Fluorescence correlation spectroscopy: principles and applications. Cold Spring Harb Protoc 2014(7):709–725

    Article  PubMed  Google Scholar 

  4. Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2(11):2842–2856

    Article  CAS  PubMed  Google Scholar 

  5. Krieger JW, Singh AP, Bag N, Garbe CS, Saunders TE, Langowski J, Wohland T (2015) Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc 10(12):1948–1974

    Article  CAS  PubMed  Google Scholar 

  6. Malchus N (2011) Fluorescence correlation spectroscopy: detecting and interpreting the mobility of transmembrane proteins in vivo. Curr Protoc Toxicol 48(1):2–19

    Article  Google Scholar 

  7. Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8(3):433–443

    Article  CAS  PubMed  Google Scholar 

  8. Krmpot AJ, Nikolic SN, Oasa S, Papadopoulos DK, Vitali M, Oura M, Mikuni S, Thyberg P, Tisa S, Kinjo M, Nilsson L, Terenius L, Rigler R, Vukojevic V (2019) Functional fluorescence microscopy imaging: quantitative scanning-free confocal fluorescence microscopy for the characterization of fast dynamic processes in live cells. Anal Chem 91(17):11129–11137

    Article  CAS  PubMed  Google Scholar 

  9. Loman A, Gregor I, Stutz C, Mund M, Enderlein J (2010) Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochem Photobiol Sci 9(5):627–636

    Article  CAS  PubMed  Google Scholar 

  10. Oura M, Yamamoto J, Ishikawa H, Mikuni S, Fukushima R, Kinjo M (2016) Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell. Sci Rep 6:1–7

    Article  Google Scholar 

  11. Widengren J, Mets U, Rigler R (1995) Fluorescence correlation spectroscopy of triplet-states in solution – a theoretical and experimental-study. J Phys Chem 99(36):13368–13379

    Article  CAS  Google Scholar 

  12. Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6(1):164–170

    Article  CAS  PubMed  Google Scholar 

  13. Petrov EP, Schwille P (2008) State of the art and novel trends in fluorescence correlation spectroscopy. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements II: bioanalytical and biomedical applications. Springer, Heidelberg, pp 145–197

    Chapter  Google Scholar 

  14. Landau LD, Lifshitz EM (1980) Statistical physics, Part 1. Pergamon Press, Oxford

    Google Scholar 

  15. Jakobowska I, Becker F, Minguzzi S, Hansen K, Henke B, Epalle NH, Beitz E, Hannus S (2021) Fluorescence cross-correlation spectroscopy yields true affinity and binding kinetics of plasmodium lactate transport inhibitors. Pharmaceuticals-Base 14(8):757

    Article  CAS  Google Scholar 

  16. Krüger D, Ebenhan J, Werner S, Bacia K (2017) Measuring protein binding to lipid vesicles by fluorescence cross-correlation spectroscopy. Biophys J 113(6):1311–1320

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bernard J, Fleury L, Talon H, Orrit M (1993) Photon bunching in the fluorescence from single molecules – a probe for intersystem crossing. J Chem Phys 98(2):850–859

    Article  CAS  Google Scholar 

  18. Sýkora J, Kaiser K, Gregor I, Bonigk W, Schmalzing G, Enderlein J (2007) Exploring fluorescence antibunching in solution to determine the stoichiometry of molecular complexes. Anal Chem 79(11):4040–4049

    Article  PubMed  Google Scholar 

  19. Temirov J, Werner J, Goodwin P, Bradbury A (2012) “Sizing” the oligomers of Azami Green fluorescent protein with FCS and antibunching. SPIE

    Book  Google Scholar 

  20. Yeh HC, Puleo CM, Ho YP, Bailey VJ, Lim TC, Liu K, Wang TH (2008) Tunable blinking kinetics of Cy5 for precise DNA quantification and single-nucleotide difference detection. Biophys J 95(2):729–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mudalige K, Habuchi S, Goodwin PM, Pai RK, De Schryver F, Cotlet M (2010) Photophysics of the red chromophore of HcRed: evidence for cis-trans isomerization and protonation-state changes. J Phys Chem B 114(13):4678–4685

    Article  CAS  PubMed  Google Scholar 

  22. Hofling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4):046602

    Article  PubMed  Google Scholar 

  23. Wang B, Kuo J, Bae SC, Granick S (2012) When Brownian diffusion is not Gaussian. Nat Mater 11(6):481–485

    Article  CAS  PubMed  Google Scholar 

  24. Berne B, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  25. Rathgeber S, Beauvisage HJ, Chevreau H, Willenbacher N, Oelschlaeger C (2009) Microrheology with fluorescence correlation spectroscopy. Langmuir 25(11):6368–6376

    Article  CAS  PubMed  Google Scholar 

  26. Jin W, Simsek MF, Pralle A (2018) Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS. Methods 140:151–160

    Article  PubMed  Google Scholar 

  27. Šachl R, Bergstrand J, Widengren J, Hof M (2016) Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains. J Phys D Appl Phys 49(11):114002

    Article  Google Scholar 

  28. Scipioni L, Lanzano L, Diaspro A, Gratton E (2018) Comprehensive correlation analysis for super-resolution dynamic fingerprinting of cellular compartments using the Zeiss Airyscan detector. Nat Commun 9:1–7

    Article  CAS  Google Scholar 

  29. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65(2):251–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Bacia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebenhan, J., Bacia, K. (2022). Principles of Fluorescence Correlation and Dual-Color Cross-Correlation Spectroscopy. In: Šachl, R., Amaro, M. (eds) Fluorescence Spectroscopy and Microscopy in Biology. Springer Series on Fluorescence, vol 20. Springer, Cham. https://doi.org/10.1007/4243_2022_33

Download citation

Publish with us

Policies and ethics