Skip to main content

Choosing the Right Fluorescent Probe

  • Chapter
  • First Online:
Fluorescence Spectroscopy and Microscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 20))

Abstract

Fluorescence microscopy and spectroscopy are by now used routinely in any laboratory working on the field of basic and applied biological sciences. A wide and expanding library of small organic fluorophores with radically different properties has been made available, offering great flexibility to the user of fluorescence-based methods. Beyond small organic fluorophores, the development of fluorescent proteins allowed for the introduction of genetically encoded fluorescence tagging, a novel tool that quickly revolutionized cellular imaging and cell biology.

Still, a considerable fraction of casual users of fluorescence tools do not follow rational considerations when selecting a fluorescent probe for their intended application, often relying on trial and error alone, which inevitably leads to a decrease in data quality and limits the potential of fluorescence-based methods. This chapter aims to present an overview of the most important considerations to be made when selecting a fluorescent reporter. Fluorophore properties and their importance for fluorescence assays will be discussed. A list of different fluorophores and a summary of their properties will also be presented as a tool to assist in the process of choosing the right fluorescence probe. Finally, specific applications such as super-resolution microscopy require very specific fluorophores, and these will be discussed separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Boston

    Google Scholar 

  2. Andersson H, Baechi T, Hoechl M, Richter C (1998) Autofluorescence of living cells. J Microsc 191:1–7

    CAS  PubMed  Google Scholar 

  3. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    CAS  PubMed  Google Scholar 

  4. Brandes R, Bers DM (1996) Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys J 71:1024–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Masters BR, Chance B (1999) Redox confocal imaging: intrinsic fluorescent probes of cellular metabolism. In: Fluorescent and luminescent probes for biological activity. Elsevier, pp 361–374

    Google Scholar 

  6. Hellmann N, Schneider D (2019) Hands on: using tryptophan fluorescence spectroscopy to study protein structure. In: Protein supersecondary structures. Humana Press, New York, pp 379–401

    Google Scholar 

  7. Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80:2093–2109

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106:1769–1784

    CAS  PubMed  Google Scholar 

  9. Ghisaidoobe ABT, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on förster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Banerjee B, Graves LR, Utzinger U (2012) Tryptophan fluorescence of cells and tissue in esophageal carcinoma. IEEE Sensors J 12:3273–3274

    CAS  Google Scholar 

  11. Li R, Dhankhar D, Chen J, Cesario TC, Rentzepis PM (2019) A tryptophan synchronous and normal fluorescence study on bacteria inactivation mechanism. Proc Natl Acad Sci 116:18822–18826

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Galas L, Gallavardin T, Bénard M, Lehner A, Schapman D, Lebon A, Komuro H, Lerouge P, Leleu S, Franck X (2018) “Probe, sample, and instrument (PSI)”: the hat-trick for fluorescence live cell imaging. Chemosensors 6:40

    Google Scholar 

  13. Fu Y, Finney NS (2018) Small-molecule fluorescent probes and their design. RSC Adv 8:29051–29061

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tian X, Murfin LC, Wu L, Lewis SE, James TD (2021) Fluorescent small organic probes for biosensing. Chem Sci 12:3406–3426

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang Y, Zhang Y, Huo F, Wen Y, Yin C (2020) Design strategy and bioimaging of small organic molecule multicolor fluorescent probes. Sci China Chem 63(12):1742–1755

    CAS  Google Scholar 

  16. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    CAS  PubMed  Google Scholar 

  17. Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111

    CAS  PubMed  Google Scholar 

  18. Abbasi E, Kafshdooz T, Bakhtiary M, Nikzamir N, Nikzamir N, Nikzamir M, Mohammadian M, Akbarzadeh A (2016) Biomedical and biological applications of quantum dots. Artif Cells, Nanomed Biotechnol 44:885–891

    CAS  PubMed  Google Scholar 

  19. Hatipoglu MK, Kelestemur S, Culha M (2016) Synthesis and biological applications of quantum dots. Springer, Cham, pp 505–534

    Google Scholar 

  20. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    CAS  PubMed  Google Scholar 

  21. Zhou J, Yang Y, Zhang CY (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717

    CAS  PubMed  Google Scholar 

  22. Bilan R, Fleury F, Nabiev I, Sukhanova A (2015) Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug Chem 26:609–624

    CAS  PubMed  Google Scholar 

  23. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    CAS  PubMed  Google Scholar 

  24. Connell TU, James JL, White AR, Donnelly PS (2015) Protein labelling with versatile phosphorescent metal complexes for live cell luminescence imaging. Chem – A Eur J 21:14146–14155

    CAS  Google Scholar 

  25. Fernández-Moreira V, Thorp-Greenwood FL, Coogan MP (2009) Application of d6 transition metal complexes in fluorescence cell imaging. Chem Commun 46:186–202

    Google Scholar 

  26. Tzubery A, Melamed-Book N, Tshuva EY (2018) Fluorescent antitumor titanium(IV) salen complexes for cell imaging. Dalton Trans 47:3669–3673

    CAS  PubMed  Google Scholar 

  27. Cotruvo JA (2019) The chemistry of lanthanides in biology: recent discoveries, emerging principles, and technological applications. ACS Cent Sci 5:1496–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho U, Chen JK (2020) Lanthanide-based optical probes of biological systems. Cell Chem Biol 27:921–936

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathieu E, Sipos A, Demeyere E, Phipps D, Sakaveli D, Borbas KE (2018) Lanthanide-based tools for the investigation of cellular environments. Chem Commun 54:10021–10035

    CAS  Google Scholar 

  30. Andraud C, Maury O (2009) Lanthanide complexes for nonlinear optics: from fundamental aspects to applications. Eur J Inorg Chem:4357–4371

    Google Scholar 

  31. Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C (2021) Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B 9:6553–6575

    CAS  PubMed  Google Scholar 

  32. Unnikrishnan B, Wu RS, Wei SC, Huang CC, Chang HT (2020) Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 5:11248–11261

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lesani P, Hazeera A, Hadi M, Lu Z, Palomba S, New EJ, Zreiqat H (2021) Design principles and biological applications of red-emissive two-photon carbon dots. Commun Mater 2(1):1–12

    Google Scholar 

  34. Qu D, Wang X, Bao Y, Sun Z (2020) Recent advance of carbon dots in bio-related applications. J Phys Mater 3:022003

    CAS  Google Scholar 

  35. Jensen EC (2012) Use of fluorescent probes: their effect on cell biology and limitations. Anat Rec Adv Integr Anat Evol Biol 295:2031–2036

    CAS  Google Scholar 

  36. Wallace PK, Muirhead KA (2007) Cell tracking 2007: a proliferation of probes and applications. Immunol Investig 36:527–561

    CAS  Google Scholar 

  37. Chen M, He X, Wang K, He D, Yang X, Shi H (2014) Inorganic fluorescent nanoprobes for cellular and subcellular imaging. TrAC – Trends Anal Chem 58:120–129

    CAS  Google Scholar 

  38. Haque A, Faizi MSH, Rather JA, Khan MS (2017) Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg Med Chem 25:2017–2034

    CAS  PubMed  Google Scholar 

  39. Wan M, Zhu Y, Zou J (2020) Novel near-infrared fluorescent probe for live cell imaging. Exp Ther Med 19:1213

    CAS  PubMed  Google Scholar 

  40. Tsubono Y, Kawamoto Y, Hidaka T, Pandian GN, Hashiya K, Bando T, Sugiyama H (2020) A near-infrared fluorogenic pyrrole-imidazole polyamide probe for live-cell imaging of telomeres. J Am Chem Soc 142:17356–17363

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu X, Zhang QY, Wang F, Jiang JH (2019) A near infrared fluorescent probe for the detection and imaging of prolyl aminopeptidase activity in living cells. Analyst 144:5980–5985

    CAS  PubMed  Google Scholar 

  42. Baeyer A (1871) Ueber eine neue Klasse von Farbstoffen. Ber Dtsch Chem Ges 4:555–558

    Google Scholar 

  43. Johnson I, Spence M (2010) Molecular probes handbook, a guide to fluorescent probes and labeling technologies.11th edn. Life Technologies, New York

    Google Scholar 

  44. Tsien RY, Waggoner A (1995) Fluorophores for confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, Boston, pp 267–279

    Google Scholar 

  45. Nanguneri S, Flottmann B, Herrmannsdörfer F, Kuner T, Heilemann M (2014) Single-molecule super-resolution imaging by tryptophan-quenching-induced photoswitching of phalloidin-fluorophore conjugates. Microsc Res Tech 77:510–516

    CAS  PubMed  Google Scholar 

  46. Haenni D, Zosel F, Reymond L, Nettels D, Schuler B (2013) Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. J Phys Chem B 117:13015–13028

    CAS  PubMed  Google Scholar 

  47. ISS 2021 lifetime data of selected fluorophores

    Google Scholar 

  48. Nakata E, Koshi Y, Koga E, Katayama Y, Hamachi I (2005) Double-modification of lectin using two distinct chemistries for fluorescent ratiometric sensing and imaging saccharides in test tube or in cell. J Am Chem Soc 127:13253–13261

    CAS  PubMed  Google Scholar 

  49. Urban NT, Foreman MR, Hell SW, Sivan Y (2018) Nanoparticle-assisted STED nanoscopy with gold nanospheres. ACS Photonics 5:2574–2583

    CAS  Google Scholar 

  50. Adinolfi B, Pellegrino M, Tombelli S, Trono C, Giannetti A, Domenici C, Varchi G, Sotgiu G, Ballestri M, Baldini F (2018) Polymeric nanoparticles promote endocytosis of a survivin molecular beacon: localization and fate of nanoparticles and beacon in human A549 cells. Life Sci 215:106–112

    CAS  PubMed  Google Scholar 

  51. Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeid P (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci U S A 106:8107–8112

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ultzinger U (2011) Spectra database hosted at the University of Arizona

    Google Scholar 

  53. Kang HC, Haugland RP, Fisher PJ, Prendergast FG (1989) Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrronlethen-1,1′-borondifluoride complex (Bodipy), its sodium salt, and protein derivatives. In: Salzman GC (ed) New technologies in cytometry. SPIE, p 68

    Google Scholar 

  54. Moens PDJ, Bagatolli LA (2007) Profilin binding to sub-micellar concentrations of phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol (3,4,5) trisphosphate. Biochim Biophys Acta 1768:439–449

    CAS  PubMed  Google Scholar 

  55. Sauer M, Hofkens J, Enderlein J (2011) Fluorophores and fluorescent labels. In: Handbook of fluorescence spectroscopy and imaging. Wiley, Weinheim, pp 31–60

    Google Scholar 

  56. Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V, Neumann E, Bibette J, Vinet F (2009) Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. J Biomed Opt 14:054005

    PubMed  Google Scholar 

  57. Lee IH, Saha S, Polley A, Huang H, Mayor S, Rao M, Groves JT (2015) Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures. J Phys Chem B 119:4450–4459

    CAS  PubMed  Google Scholar 

  58. Georgiev R, Christova D, Todorova L, Georgieva B, Vasileva M, Novakov C, Babeva T (2018) Triblock copolymer micelles as templates for preparation of mesoporous niobia thin films. J Phys Conf Ser 992:012037

    Google Scholar 

  59. Gracetto AC, Batistela VR, Caetano W, De Oliveira HPM, Santos WG, Cavalheiro CCS, Hioka N (2010) Unusual 1,6-diphenyl-1,3,5-hexatriene (DPH) spectrophotometric behavior in water/ethanol and water/DMSO mixtures. J Braz Chem Soc 21:1497–1502

    CAS  Google Scholar 

  60. Hudson EN, Weber G (1973) Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry 12:4154–4161

    CAS  PubMed  Google Scholar 

  61. Nunnally BK, He H, Li LC, Tucker SA, McGown LB (1997) Characterization of visible dyes for four-decay fluorescence detection in dna sequencing. Anal Chem 69:2392–2397

    CAS  PubMed  Google Scholar 

  62. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822

    CAS  Google Scholar 

  63. Martin MM, Lindqvist L (1975) The pH dependence of fluorescein fluorescence. J Lumin 10:381–390

    CAS  Google Scholar 

  64. Magde D, Rojas GE, Seybold PG (1999) Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem Photobiol 70:737–744

    CAS  Google Scholar 

  65. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by Laurdan fluorescence. J Fluoresc 5:59–69

    CAS  PubMed  Google Scholar 

  66. Fery-Forgues S, Fayet JP, Lopez A (1993) Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state? J Photochem Photobiol A Chem 70:229–243

    CAS  Google Scholar 

  67. Lin S, Struve WS (1991) Time-resolved fluorescence of nitrobenzoxadiazole-aminohexanoic acid: effect of intermolecular hydrogen-bonding on non-radiative decay. Photochem Photobiol 54:361–365

    CAS  PubMed  Google Scholar 

  68. Amaro M, Filipe HAL, Prates Ramalho JP, Hof M, Loura LMS (2016) Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location. Phys Chem Chem Phys 18:7042–7054

    CAS  PubMed  Google Scholar 

  69. Tajalli H, Gilani AG, Zakerhamidi MS, Tajalli P (2008) The photophysical properties of Nile red and Nile blue in ordered anisotropic media. Dyes Pigments 78:15–24

    CAS  Google Scholar 

  70. Cser A, Nagy K, Biczók L (2002) Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment. Chem Phys Lett 360:473–478

    CAS  Google Scholar 

  71. Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    CAS  PubMed  Google Scholar 

  72. Prendergast FG, Callahan PJ, Haugland RP (1981) 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338

    CAS  PubMed  Google Scholar 

  73. Kozma E, Kele P (2019) Fluorogenic probes for super-resolution microscopy. Org Biomol Chem 17:215–233

    CAS  PubMed  Google Scholar 

  74. Wang L, Frei MS, Salim A, Johnsson K (2019) Small-molecule fluorescent probes for live-cell super-resolution microscopy. J Am Chem Soc 141:2770–2781

    CAS  PubMed  Google Scholar 

  75. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang NJ, Hinner MJ (2015) Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol 1266:29–53

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mobbs P, Becker D, Williamson R, Bate M, Warner A (1999) Techniques for dye injection and cell labelling. In: Microelectrode techniques. The Plymouth workshop handbook. The Company of Biologists Ltd, Cambridge, pp 361–387

    Google Scholar 

  78. Ji X, Ji K, Chittavong V, Aghoghovbia RE, Zhu M, Wang B (2017) Click and fluoresce: a bioorthogonally activated smart probe for wash-free fluorescent labeling of biomolecules. J Org Chem 82:1471–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Larsson A, Carlsson C, Jonsson M, Albinsson B (1994) Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy. J Am Chem Soc 116:8459–8465

    CAS  Google Scholar 

  80. Hirons GT, Fawcett JJ, Crissman HA (1994) TOTO and YOYO: new very bright fluorochromes for DNA content analyses by flow cytometry. Cytometry 15:129–140

    CAS  PubMed  Google Scholar 

  81. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2:910–919

    CAS  PubMed  Google Scholar 

  82. Vira S, Mekhedov E, Humphrey G, Blank PS (2010) Fluorescent-labeled antibodies: balancing functionality and degree of labeling. Anal Biochem 402:146–150

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Szabó Á, Szendi-Szatmári T, Ujlaky-Nagy L, Rádi I, Vereb G, Szöllősi J, Nagy P (2018) The effect of fluorophore conjugation on antibody affinity and the photophysical properties of dyes. Biophys J 114:688–700

    PubMed  PubMed Central  Google Scholar 

  84. Cosa G, Focsaneanu K-S, McLean JRN, McNamee JP, Scaiano JC (2001) Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol 73:585

    CAS  PubMed  Google Scholar 

  85. Mullins JM (2010) Fluorochromes: properties and characteristics. Methods Mol Biol 588:123–134

    CAS  PubMed  Google Scholar 

  86. Li Q, Seeger S (2011) Multidonor deep-UV FRET study of protein – ligand binding and its potential to obtain structure information. J Phys Chem B 115:13643–13649

    CAS  PubMed  Google Scholar 

  87. Berlman I (1971) Handbook of fluorescence spectra of aromatic molecules.2nd edn. Elsevier

    Google Scholar 

  88. Chen H, Ahsan SS, Santiago-Berrios MB, Abruña HD, Webb WW (2010) Mechanisms of quenching of alexa fluorophores by natural amino acids. J Am Chem Soc 132:7244–7245

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Marmé N, Knemeyer JP, Sauer M, Wolfrum J (2003) Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug Chem 14:1133–1139

    PubMed  Google Scholar 

  90. Neuweiler H, Schulz A, Vaiana AC, Smith JC, Kaul S, Wolfrum J, Sauer M (2002) Detection of individual p53-autoantibodies by using quenched peptide-based molecular probes. Angew Chem Int Ed 41:4769–4773

    CAS  Google Scholar 

  91. Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659

    CAS  PubMed  Google Scholar 

  92. Diaspro A, Chirico G, Usai C, Ramoino P, Dobrucki J (2006) Photobleaching. In: Handbook of biological confocal microscopy. Springer, Boston, pp 690–702

    Google Scholar 

  93. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47:5465–5469

    CAS  Google Scholar 

  94. Demchenko AP (2020) Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 8:022001

    CAS  PubMed  Google Scholar 

  95. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    CAS  PubMed  Google Scholar 

  96. Mitronova GY, Belov VN, Bossi ML, Wurm CA, Meyer L, Medda R, Moneron G, Bretschneider S, Eggeling C, Jakobs S, Hell SW (2010) New fluorinated rhodamines for optical microscopy and nanoscopy. Chem – A Eur J 16:4477–4488

    CAS  Google Scholar 

  97. Heilemann M, Van De Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48:6903–6908

    CAS  Google Scholar 

  98. Hnedzko D, McGee DW, Rozners E (2016) Synthesis and properties of peptide nucleic acid labeled at the N-terminus with HiLyte Fluor 488 fluorescent dye. Bioorg Med Chem 24:4199–4205

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, Lionnet T, Lavis LD (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hinkeldey B, Schmitt A, Jung G (2008) Comparative photostability studies of BODIPY and fluorescein dyes by using fluorescence correlation spectroscopy. ChemPhysChem 9:2019–2027

    CAS  PubMed  Google Scholar 

  101. Gorka AP, Schnermann MJ (2016) Harnessing cyanine photooxidation: from slowing photobleaching to near-IR uncaging. Curr Opin Chem Biol 33:117–125

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng Q, Jockusch S, Zhou Z, Blanchard SC (2014) The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem Photobiol 90:448–454

    CAS  PubMed  Google Scholar 

  103. Yguerabide J, Schmidt JA, Yguerabide EE (1982) Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J 40:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC (2012) Advanced fluorescence microscopy techniques–FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–4132

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gruber HJ, Hahn CD, Kada G, Riener CK, Harms GS, Ahrer W, Dax TG, Knaus HG (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjug Chem 11:696–704

    CAS  PubMed  Google Scholar 

  106. Gebhardt C, Lehmann M, Reif MM, Zacharias M, Gemmecker G, Cordes T (2021) Molecular and spectroscopic characterization of green and red cyanine fluorophores from the Alexa Fluor and AF series. ChemPhysChem 22:1566–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Valdes-Aguilera O, Neckers DC (1989) Aggregation phenomena in xanthene dyes. Acc Chem Res 22:171–177

    CAS  Google Scholar 

  108. Demchenko AP (2009) Introduction to fluorescence sensing. Springer, Dordrecht

    Google Scholar 

  109. Bergström F, Mikhalyov I, Hägglöf P, Wortmann R, Ny T, Johansson LBÅ (2002) Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J Am Chem Soc 124:196–204

    PubMed  Google Scholar 

  110. Monteiro ME, Sarmento MJ, Fernandes F (2014) Role of calcium in membrane interactions by PI(4,5)P2 – binding proteins. Biochem Soc Trans 42:1441–1446

    CAS  PubMed  Google Scholar 

  111. Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M (2016) A rotational BODIPY nucleotide: an environment-sensitive fluorescence-lifetime probe for DNA interactions and applications in live-cell microscopy. Angew Chem 128:182–186

    Google Scholar 

  112. Song X, Li N, Wang C, Xiao Y (2017) Targetable and fixable rotor for quantifying mitochondrial viscosity of living cells by fluorescence lifetime imaging. J Mater Chem B 5:360–368

    CAS  PubMed  Google Scholar 

  113. Leung RWK, Yeh S-CA, Fang Q (2011) Effects of incomplete decay in fluorescence lifetime estimation. Biomed Opt Express 2:2517–2531

    PubMed  PubMed Central  Google Scholar 

  114. Lavis LD, Rutkoski TJ, Raines RT (2007) Tuning the pK a of fluorescein to optimize binding assays environment. The fluorescence of the dye varies likewise. Life Sci 79:6775–6782

    CAS  Google Scholar 

  115. Haugland RP (2005) The molecular probes handbook: a guide to fluorescent probes and labeling technologies. Invitrogen Corp, Karlsbad

    Google Scholar 

  116. Paradiso AM, Tsien RY, Machen TE (1984) Na+-H+ exchange in gastric glands as measured with a cytoplasmic-trapped, fluorescent pH indicator. Proc Natl Acad Sci 81:7436–7440

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rink TI, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196

    CAS  PubMed  Google Scholar 

  118. Yoshihara T, Maruyama R, Shiozaki S, Yamamoto K, Kato SI, Nakamura Y, Tobita S (2020) Visualization of lipid droplets in living cells and fatty livers of mice based on the fluorescence of π-extended coumarin using fluorescence lifetime imaging microscopy. Anal Chem 92:4996–5003

    CAS  PubMed  Google Scholar 

  119. Yang D, Dai SY (2020) A visible and near-infrared light activatable diazocoumarin probe for fluorogenic protein labeling in living cells. J Am Chem Soc 142:17156–17166

    PubMed  Google Scholar 

  120. Sun W, Guo S, Hu C, Fan J, Peng X (2016) Recent development of chemosensors based on cyanine platforms. Chem Rev 116:7768–7817

    CAS  PubMed  Google Scholar 

  121. Shindy HA (2017) Fundamentals in the chemistry of cyanine dyes: a review. Dyes Pigments 145:505–513

    CAS  Google Scholar 

  122. Zheng Q, Lavis LD (2017) Development of photostable fluorophores for molecular imaging. Curr Opin Chem Biol 39:32–38

    CAS  PubMed  Google Scholar 

  123. Li G, Guan Y, Ye F, Liu SH, Yin J (2020) Cyanine-based fluorescent indicator for mercury ion and bioimaging application in living cells. Spectrochim Acta A Mol Biomol Spectrosc 239:118465

    CAS  PubMed  Google Scholar 

  124. Uno K, Sugimoto N, Sato Y (2021) N-aryl pyrido cyanine derivatives are nuclear and organelle DNA markers for two-photon and super-resolution imaging. Nat Commun 12(1):1–9

    Google Scholar 

  125. Aristova D, Kosach V, Chernii S, Slominsky Y, Balanda A, Filonenko V, Yarmoluk S, Rotaru A, Özkan HG, Mokhir A, Kovalska V (2021) Monomethine cyanine probes for visualization of cellular RNA by fluorescence microscopy. Methods Appl Fluoresc 9:045002

    CAS  Google Scholar 

  126. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433

    CAS  PubMed  Google Scholar 

  127. Duan Y, Liu M, Sun W, Wang M, Liu S, Li Q (2009) Recent progress on synthesis of fluorescein probes. Mini Rev Org Chem 6:35–43

    CAS  Google Scholar 

  128. Rajasekar M (2021) Recent development in fluorescein derivatives. J Mol Struct 1224:129085

    CAS  Google Scholar 

  129. Le Guern F, Mussard V, Gaucher A, Rottman M, Prim D (2020) Fluorescein derivatives as fluorescent probes for ph monitoring along recent biological applications. Int J Mol Sci 21:1–23

    Google Scholar 

  130. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    CAS  PubMed  Google Scholar 

  131. Martynov VI, Pakhomov AA (2021) BODIPY derivatives as fluorescent reporters of molecular activities in living cells. Russ Chem Rev 90:1213–1262

    Google Scholar 

  132. Yue J, Tao Y, Zhang J, Wang H, Wang N, Zhao W (2021) BODIPY-based fluorescent probe for fast detection of hydrogen sulfide and lysosome-targeting applications in living cells. Chem – An Asian J 16:850–855

    CAS  Google Scholar 

  133. Toseland CP (2013) Fluorescent labeling and modification of proteins. J Chem Biol 6:85–95

    PubMed  PubMed Central  Google Scholar 

  134. Obermaier C, Griebel A, Westermeier R (2015) Principles of protein labeling techniques. Methods Mol Biol 1295:153–165

    CAS  PubMed  Google Scholar 

  135. Sereda TJ, Mant CT, Quinn AM, Hodges RS (1993) Effect of the alpha-amino group on peptide retention behaviour in reversed-phase chromatography. Determination of the pK(a) values of the alpha-amino group of 19 different N-terminal amino acid residues. J Chromatogr 646:17–30

    CAS  PubMed  Google Scholar 

  136. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    CAS  PubMed  Google Scholar 

  137. Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    PubMed  Google Scholar 

  138. Klein A, Hank S, Raulf A, Joest EF, Tissen F, Heilemann M, Wieneke R, Tampé R (2018) Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chem Sci 9:7835

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Herce HD, Schumacher D, Schneider AFL, Ludwig AK, Mann FA, Fillies M, Kasper MA, Reinke S, Krause E, Leonhardt H, Cardoso MC, Hackenberger CPR (2017) Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nat Chem 9(8):762–771

    CAS  PubMed  Google Scholar 

  140. Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030

    PubMed  PubMed Central  Google Scholar 

  141. Hoelzel CA, Zhang X (2020) Visualizing and manipulating biological processes by using HaloTag and SNAP-tag technologies. ChemBioChem 21:1935–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    CAS  PubMed  Google Scholar 

  143. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2002) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89

    PubMed  Google Scholar 

  144. Juillerat A, Gronemeyer T, Keppler A, Gendreizig S, Pick H, Vogel H, Johnsson K (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317

    CAS  PubMed  Google Scholar 

  145. Gautier A, Juillerat A, Heinis C, Corrêa IR, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    CAS  PubMed  Google Scholar 

  146. Miller LW, Cai Y, Sheetz MP, Cornish VW (2005) In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat Methods 2:255–257

    CAS  PubMed  Google Scholar 

  147. Mizukami S, Watanabe S, Hori Y, Kikuchi K (2009) Covalent protein labeling based on noncatalytic β-lactamase and a designed FRET substrate. J Am Chem Soc 131:5016–5017

    CAS  PubMed  Google Scholar 

  148. Hori Y, Ueno H, Mizukami S, Kikuchi K (2009) Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity. J Am Chem Soc 131:16610–16611

    CAS  PubMed  Google Scholar 

  149. Liu Y, Zhang X, Tan YL, Bhabha G, Ekiert DC, Kipnis Y, Bjelic S, Baker D, Kelly JW (2014) De novo-designed enzymes as small-molecule-regulated fluorescence imaging tags and fluorescent reporters. J Am Chem Soc 136:13102–13105

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu Y, Miao K, Li Y, Fares M, Chen S, Zhang X (2018) A HaloTag-based multicolor fluorogenic sensor visualizes and quantifies proteome stress in live cells using solvatochromic and molecular rotor-based fluorophores. Biochemistry 57:4663–4674

    CAS  PubMed  Google Scholar 

  151. Adams SR (2008) Tags and probes for chemical biology: the biarsenical-tetracysteine protein tag: chemistry and biological applications. In: Chemical biology: from small molecules to systems biology and drug design, vol 1–3. Wiley, pp 427–457

    Google Scholar 

  152. Sarmento MJ, Oneto M, Pelicci S, Pesce L, Scipioni L, Faretta M, Furia L, Dellino GI, Pelicci PG, Bianchini P, Diaspro A, Lanzanò L (2018) Exploiting the tunability of stimulated emission depletion microscopy for super-resolution imaging of nuclear structures. Nat Commun 9:3415

    PubMed  PubMed Central  Google Scholar 

  153. Liang L, Astruc D (2011) The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord Chem Rev 255:2933–2945

    CAS  Google Scholar 

  154. Presolski SI, Hong VP, Finn MG (2011) Copper-catalyzed azide–alkyne click chemistry for bioconjugation. Curr Protoc Chem Biol 3:153–162

    PubMed  PubMed Central  Google Scholar 

  155. Gutmann M, Memmel E, Braun AC, Seibel J, Meinel L, Lühmann T (2016) Biocompatible azide-alkyne “click” reactions for surface decoration of glyco-engineered cells. ChemBioChem 17:866–875

    CAS  PubMed  Google Scholar 

  156. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci 104:16793–16797

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    CAS  PubMed  Google Scholar 

  158. Li L, Zhang Z (2016) Development and applications of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules 21:1393

    PubMed  PubMed Central  Google Scholar 

  159. Laxman P, Ansari S, Gaus K, Goyette J (2021) The benefits of unnatural amino acid incorporation as protein labels for single molecule localization microscopy. Front Chem 9:161

    Google Scholar 

  160. Lee KJ, Kang D, Park HS (2019) Site-specific labeling of proteins using unnatural amino acids. Mol Cells 42:386–396

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Saal KA, Richter F, Rehling P, Rizzoli SO (2018) Combined use of unnatural amino acids enables dual-color super-resolution imaging of proteins via cick chemistry. ACS Nano 12:12247–12254

    CAS  PubMed  Google Scholar 

  162. Brown W, Liu J, Deiters A (2018) Genetic code expansion in animals. ACS Chem Biol 13:2375–2386

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Wiltschi B (2016) Incorporation of non-canonical amino acids into proteins in yeast. Fungal Genet Biol 89:137–156

    CAS  PubMed  Google Scholar 

  164. Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3(1):29–35

    CAS  PubMed  Google Scholar 

  165. Jakob L, Gust A, Grohmann D (2019) Evaluation and optimisation of unnatural amino acid incorporation and bioorthogonal bioconjugation for site-specific fluorescent labelling of proteins expressed in mammalian cells. Biochem Biophys Rep 17:1–9

    PubMed  Google Scholar 

  166. Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114:4764–4806

    CAS  PubMed  Google Scholar 

  167. Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408

    CAS  PubMed  Google Scholar 

  168. Chazotte B (2011) Labeling membrane glycoproteins or glycolipids with fluorescent wheat germ agglutinin. Cold Spring Harb Protoc:6

    Google Scholar 

  169. Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187

    CAS  PubMed  Google Scholar 

  170. Kleusch C, Hersch N, Hoffmann B, Merkel R, Csiszár A (2012) Fluorescent lipids: functional parts of fusogenic liposomes and tools for cell membrane labeling and visualization. Molecules 17:1055–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    CAS  PubMed  Google Scholar 

  172. Betz WJ, Bewick GS (1993) Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J Physiol 460:287–309

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Sýkora J, Kapusta P, Fidler V, Hof M (2002) On what time scale does solvent relaxation in phospholipid bilayers happen? Langmuir 18:571–574

    Google Scholar 

  174. Loura LMS, Prates Ramalho JP (2009) Fluorescent membrane probes’ behavior in lipid bilayers: insights from molecular dynamics simulations. Biophys Rev 1:141–148

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    CAS  PubMed  Google Scholar 

  176. Reits EAJ, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3:E145

    CAS  PubMed  Google Scholar 

  177. Macháň R, Hof M (2010) Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim Biophys Acta Biomembr 1798:1377–1391

    Google Scholar 

  178. do Canto AMTM, Robalo JR, Santos PD, Carvalho AJP, Ramalho JPP, Loura LMS (2016) Diphenylhexatriene membrane probes DPH and TMA-DPH: a comparative molecular dynamics simulation study. Biochim Biophys Acta Biomembr 1858:2647–2661

    Google Scholar 

  179. Lentz BR (1989) Membrane “fluidity” as detected by diphenylhexatriene probes. Chem Phys Lipids 50:171–190

    CAS  Google Scholar 

  180. Lentz BR (1993) Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem Phys Lipids 64:99–116

    CAS  PubMed  Google Scholar 

  181. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry 16:819–828

    CAS  PubMed  Google Scholar 

  182. Nyholm TKM, Lindroos D, Westerlund B, Slotte JP (2011) Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid. Langmuir 27:8339–8350

    CAS  PubMed  Google Scholar 

  183. de Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416

    PubMed  PubMed Central  Google Scholar 

  184. Haidekker MA, Theodorakis EA (2007) Molecular rotors – fluorescent biosensors for viscosity and flow. Org Biomol Chem 5:1669–1678

    CAS  PubMed  Google Scholar 

  185. Kuimova MK (2012) Mapping viscosity in cells using molecular rotors. Phys Chem Chem Phys 14:12671–12686

    CAS  PubMed  Google Scholar 

  186. Amaro M, Reina F, Hof M, Eggeling C, Sezgin E (2017) Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane. J Phys D Appl Phys 50:134004

    PubMed  PubMed Central  Google Scholar 

  187. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  PubMed  Google Scholar 

  188. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Subach OM, Gundorov IS, Yoshimura M, Subach FV, Zhang J, Grüenwald D, Souslova EA, Chudakov DM, Verkhusha VV (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15:1116–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Goedhart J, Von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, Van Weeren L, Gadella TWJ, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751

    PubMed  Google Scholar 

  191. Markwardt ML, Kremers G-J, Kraft CA, Ray K, Cranfill PJC, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 6:e17896

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    CAS  PubMed  Google Scholar 

  193. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208

    CAS  PubMed  Google Scholar 

  194. Zhang X, Zhang M, Li D, He W, Peng J, Betzig E, Xu P (2016) Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy. Proc Natl Acad Sci U S A 113:10364–10369

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Zapata-Hommer O, Griesbeck O (2003) Efficiently folding and circularly permuted variants of the sapphire mutant of GFP. BMC Biotechnol 3:5

    PubMed  PubMed Central  Google Scholar 

  196. Campbell BC, Nabel EM, Murdock MH, Lao-Peregrin C, Tsoulfas P, Blackmore MG, Lee FS, Liston C, Morishita H, Petsko GA (2020) mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc Natl Acad Sci U S A 117:30710–30721

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M, Davidson MW, Wang J (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    CAS  PubMed  Google Scholar 

  199. Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL, Howe ES, Davidson MW, Lin MZ, Chu J (2016) Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci Rep 6:1–12

    Google Scholar 

  200. Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ai HW, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5:401–403

    CAS  PubMed  Google Scholar 

  202. Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    PubMed  Google Scholar 

  203. Kremers GJ, Goedhart J, Van Munster EB, Gadella TWJ (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET förster radius. Biochemistry 45:6570–6580

    CAS  PubMed  Google Scholar 

  204. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    CAS  PubMed  Google Scholar 

  205. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    CAS  PubMed  Google Scholar 

  206. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    CAS  PubMed  Google Scholar 

  207. Pletnev S, Subach FV, Dauter Z, Wlodawer A, Verkhusha VV (2012) A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP. J Mol Biol 417:144–151

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Bindels DS, Haarbosch L, Van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A, Hink MA, Gadella TWJ (2016) MScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14:53–56

    PubMed  Google Scholar 

  210. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132:6481–6491

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Kogure T, Karasawa S, Araki T, Saito K, Kinjo M, Miyawaki A (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24:577–581

    CAS  PubMed  Google Scholar 

  213. Gunewardene MS, Subach FV, Gould TJ, Penoncello GP, Gudheti MV, Verkhusha VV, Hess ST (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101:1522–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574

    CAS  PubMed  Google Scholar 

  215. Lin MZ, McKeown MR, Ng HL, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16:1169–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Semenova TN, Ugalde JA, Meyers A, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850

    CAS  PubMed  Google Scholar 

  217. Deheyn DD, Kubokawa K, Mccarthy JK, Murakami A, Porrachia M, Rouse GW, Holland ND (2007) Endogenous green fluorescent protein (GFP) in amphioxus. Biol Bull 213:95–100

    CAS  PubMed  Google Scholar 

  218. Jradi FM, Lavis LD (2019) Chemistry of photosensitive fuorophores for single-molecule localization microscopy. ACS Chem Biol 14:1077–1090

    CAS  PubMed  Google Scholar 

  219. Santos EM, Sheng W, Esmatpour Salmani R, Tahmasebi Nick S, Ghanbarpour A, Gholami H, Vasileiou C, Geiger JH, Borhan B (2021) Design of large Stokes shift fluorescent proteins based on excited state proton transfer of an engineered photobase. J Am Chem Soc 143:15091–15102

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhao B, Ding W, Tan Z, Tang Q, Zhao K (2019) A large stokes shift fluorescent protein constructed from the fusion of red fluorescent mCherry and far-red fuorescent BDFP1.6. ChemBioChem 20:1167–1173

    CAS  PubMed  Google Scholar 

  221. Piatkevich KD, Hulit J, Subach OM, Wu B, Abdulla A, Segall JE, Verkhusha VV (2010) Monomeric red fluorescent proteins with a large Stokes shift. Proc Natl Acad Sci 107:5369–5374

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Piatkevich KD, Malashkevich VN, Morozova KS, Nemkovich NA, Almo SC, Verkhusha VV (2013) Extended stokes shift in fluorescent proteins: chromophore-protein interactions in a near-infrared TagRFP675 variant. Sci Rep 3:1–11

    Google Scholar 

  223. Khmelinskii A, Keller PJ, Bartosik A, Meurer M, Barry JD, Mardin BR, Kaufmann A, Trautmann S, Wachsmuth M, Pereira G, Huber W, Schiebel E, Knop M (2012) Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol 30(7):708–714

    CAS  PubMed  Google Scholar 

  224. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746

    CAS  PubMed  Google Scholar 

  225. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci 97:11984–11989

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    CAS  PubMed  Google Scholar 

  227. Zacharias DA (2002) Sticky caveats in an otherwise glowing report: oligomerizing fluorescent proteins and their use in cell biology. Sci STKE 2002(131):pe23

    PubMed  Google Scholar 

  228. Tsien RY (1999) Rosy dawn for fluorescent proteins. Nat Biotechnol 17(10):956–957

    CAS  PubMed  Google Scholar 

  229. Mishin AS, Belousov VV, Solntsev KM, Lukyanov KA (2015) Novel uses of fluorescent proteins. Curr Opin Chem Biol 27:1–9

    CAS  PubMed  Google Scholar 

  230. Stepanenko OV, Stepanenko OV, Shcherbakova DM, Kuznetsova IM, Turoverov KK, Verkhusha VV (2011) Modern fluorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques 51:313–327

    PubMed  PubMed Central  Google Scholar 

  231. Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6(10):713–717

    CAS  PubMed  Google Scholar 

  232. Kim H, Ju J, Lee HN, Chun H, Seong J (2021) Genetically encoded biosensors based on fluorescent proteins. Sensors (Switzerland) 21:1–18

    CAS  Google Scholar 

  233. Burgstaller S, Bischof H, Gensch T, Stryeck S, Gottschalk B, Ramadani-Muja J, Eroglu E, Rost R, Balfanz S, Baumann A, Waldeck-Weiermair M, Hay JC, Madl T, Graier WF, Malli R (2019) PH-lemon, a fluorescent protein-based pH reporter for acidic compartments. ACS Sensors 4:883–891

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Tutol JN, Peng W, Dodani SC (2019) Discovery and characterization of a naturally occurring, turn-on yellow fluorescent protein sensor for chloride. Biochemistry 58:31–35

    CAS  PubMed  Google Scholar 

  235. Yu X, Strub MP, Barnard TJ, Noinaj N, Piszczek G, Buchanan SK, Taraska JW (2014) An engineered palette of metal ion quenchable fluorescent proteins. PLoS One 9:e95808

    PubMed  PubMed Central  Google Scholar 

  236. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    CAS  PubMed  Google Scholar 

  237. Pak VV, Ezeriņa D, Lyublinskaya OG, Pedre B, Tyurin-Kuzmin PA, Mishina NM, Thauvin M, Young D, Wahni K, Martínez Gache SA, Demidovich AD, Ermakova YG, Maslova YD, Shokhina AG, Eroglu E, Bilan DS, Bogeski I, Michel T, Vriz S, Messens J, Belousov VV (2020) Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab 31:642–653.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knöpfel T (2008) Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol 36:53–67

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Hochreiter B, Garcia AP, Schmid JA (2015) Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors (Basel) 15:26281–26314

    CAS  PubMed  Google Scholar 

  240. Miyawaki A, Llopis J, Heim R, Michael McCaffery J, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    CAS  PubMed  Google Scholar 

  241. Calamera G, Li D, Ulsund AH, Kim JJ, Neely OC, Moltzau LR, Bjørnerem M, Paterson D, Kim C, Levy FO, Andressen KW (2019) FRET-based cyclic GMP biosensors measure low cGMP concentrations in cardiomyocytes and neurons. Commun Biol 2(1):1–12

    CAS  Google Scholar 

  242. Maryu G, Matsuda M, Aoki K (2016) Multiplexed fluorescence imaging of ERK and akt activities and cell-cycle progression. Cell Struct Funct 41:81–92

    CAS  PubMed  Google Scholar 

  243. Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z, De Gruiter HM, Kremers GJ, Davidson MW, Ustione A, Piston DW (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13(7):557–562

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Kremers GJ, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160

    CAS  PubMed  Google Scholar 

  245. Kaishima M, Ishii J, Matsuno T, Fukuda N, Kondo A (2016) Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity. Sci Rep 6(1):1–15

    Google Scholar 

  246. Van Genechten W, Demuyser L, Dedecker P, Van Dijck P (2020) Presenting a codon-optimized palette of fluorescent proteins for use in Candida albicans. Sci Rep 10:1–9

    Google Scholar 

  247. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    CAS  PubMed  Google Scholar 

  248. Li G, Huang Z, Zhang C, Dong BJ, Guo RH, Yue HW, Yan LT, Xing XH (2016) Construction of a linker library with widely controllable flexibility for fusion protein design. Appl Microbiol Biotechnol 100:215–225

    CAS  PubMed  Google Scholar 

  249. Crivat G, Taraska JW (2012) Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 30:8

    CAS  PubMed  Google Scholar 

  250. Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1(1):13–21

    CAS  PubMed  Google Scholar 

  251. Ward WW, Prentice HJ, Roth AF, Cody CW, Reeves SC (1982) Spectral perturbations of the Aequorea green-fluorescent protein. Photochem Photobiol 35:803–808

    CAS  Google Scholar 

  252. Yang F, Moss LG, Phillips GN (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14(10):1246–1251

    CAS  PubMed  Google Scholar 

  253. Swenson ES, Price JG, Brazelton T, Krause DS (2007) Limitations of green fluorescent protein as a cell lineage marker. Stem Cells 25:2593–2600

    CAS  PubMed  Google Scholar 

  254. Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61:1029–1042

    CAS  PubMed  Google Scholar 

  255. Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Yang Z, Samanta S, Yan W, Yu B, Qu J (2021) Super-resolution microscopy for biological imaging. In: Optical imaging in human disease and biological research, pp 23–43

    Google Scholar 

  257. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1):72–84

    CAS  PubMed  Google Scholar 

  258. Valli J, Garcia-Burgos A, Rooney LM, de Melo e Oliveira BV, Duncan RR, Rickman C (2021) Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J Biol Chem 297(1)

    Google Scholar 

  259. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, Jungmann R, Sauer M, Lakadamyali M, Zimmer C (2021) Single-molecule localization microscopy. Nat Rev Methods Prim 1(1):1–27

    Google Scholar 

  260. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12:505–514

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Minoshima M, Kikuchi K (2017) Photostable and photoswitching fluorescent dyes for super-resolution imaging. J Biol Inorg Chem 22:639–652

    CAS  PubMed  Google Scholar 

  263. Wang S, Moffitt JR, Dempsey GT, Xie XS, Zhuang X (2014) Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc Natl Acad Sci U S A 111:8452–8457

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Wu Z, Xu X, Xi P (2021) Stimulated emission depletion microscopy for biological imaging in four dimensions: a review. Microsc Res Tech 84:1947–1958

    PubMed  Google Scholar 

  265. Sednev MV, Belov VN, Hell SW (2015) Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods Appl Fluoresc 3(4):042004

    PubMed  Google Scholar 

  266. Jeong S, Widengren J, Lee JC (2022) Fluorescent probes for sted optical nanoscopy. Nanomaterials 12:21

    CAS  Google Scholar 

  267. Yang X, Yang Z, Wu Z, He Y, Shan C, Chai P, Ma C, Tian M, Teng J, Jin D, Yan W, Das P, Qu J, Xi P (2020) Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat Commun 11(1):1–9

    CAS  Google Scholar 

  268. Lukinavičius G, Reymond L, D’Este E, Masharina A, Göttfert F, Ta H, Güther A, Fournier M, Rizzo S, Waldmann H, Blaukopf C, Sommer C, Gerlich DW, Arndt HD, Hell SW, Johnsson K (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11:731–733

    PubMed  Google Scholar 

  269. Xu Y, Xu R, Wang Z, Zhou Y, Shen Q, Ji W, Dang D, Meng L, Tang BZ (2021) Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. Chem Soc Rev 50:667–690

    CAS  PubMed  Google Scholar 

  270. Sreedharan S, Gill MR, Garcia E, Saeed HK, Robinson D, Byrne A, Cadby A, Keyes TE, Smythe C, Pellett P, Bernardino De La Serna J, Thomas JA (2017) Multimodal super-resolution optical microscopy using a transition-metal-based probe provides unprecedented capabilities for imaging both nuclear chromatin and mitochondria. J Am Chem Soc 139:15907–15913

    CAS  PubMed  Google Scholar 

  271. Butkevich AN, Lukinavičius G, D’Este E, Hell SW (2017) Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy. J Am Chem Soc 139:12378–12381

    CAS  PubMed  Google Scholar 

  272. Nienhaus K, Ulrich Nienhaus G (2014) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 43:1088–1106

    CAS  PubMed  Google Scholar 

  273. Feld LG, Shynkarenko Y, Krieg F, Rainò G, Kovalenko MV (2021) Perovskite quantum dots for super-resolution optical microscopy: where strong photoluminescence blinking matters. Adv Opt Mater 9:2100620

    CAS  Google Scholar 

  274. Jin D, Xi P, Wang B, Zhang L, Enderlein J, Van Oijen AM (2018) Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods 15:415–423

    CAS  PubMed  Google Scholar 

  275. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci 103:18911–18916

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Schwering M, Kiel A, Kurz A, Lymperopoulos K, Sprödefeld A, Krämer R, Herten DP (2011) Far-field nanoscopy with reversible chemical reactions. Angew Chem Int Ed 50:2940–2945

    CAS  Google Scholar 

  277. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    CAS  PubMed  Google Scholar 

  278. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651–12656

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Hoi H, Shaner NC, Davidson MW, Cairo CW, Wang J, Campbell RE (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401:776–791

    CAS  PubMed  Google Scholar 

  280. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729

    CAS  PubMed  Google Scholar 

  281. Fuchs J, Böhme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7:627–630

    CAS  PubMed  Google Scholar 

  282. Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M, Dedecker P, Ando R, Miyawaki A, Michiels J, Engelborghs Y, Hofkens J (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18:1241–1251

    CAS  PubMed  Google Scholar 

  283. Xia J, Kim SHH, Macmilllan S, Truant R (2006) Practical three color live cell imaging by widefield microscopy. Biol Proced Online 8:63–68

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV (2011) A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat Methods 8:771–780

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Chozinski TJ, Gagnon LA, Vaughan JC, Puchner EM, Huang B, Gaub HE, Just W (2014) Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett 588:3603–3612

    CAS  PubMed  Google Scholar 

  286. Rust MJ, Bates M, Zhuang X (2006) Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. Nat Methods 3:793

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Tam J, Cordier GA, Borbely JS, Álvarez ÁS, Lakadamyali M (2014) Cross-talk-free multi-color storm imaging using a single fluorophore. PLoS One 9:e101772

    PubMed  PubMed Central  Google Scholar 

  289. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–3806

    CAS  PubMed  Google Scholar 

  290. Vaughan JC, Dempsey GT, Sun E, Zhuang X (2013) Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy. J Am Chem Soc 135:1197–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Vaughan JC, Jia S, Zhuang X (2012) Ultrabright photoactivatable fluorophores created by reductive caging. Nat Methods 9:1181–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Lehmann M, Gottschalk B, Puchkov D, Schmieder P, Schwagerus S, Hackenberger CPR, Haucke V, Schmoranzer J (2015) Multicolor caged dSTORM resolves the ultrastructure of synaptic vesicles in the brain. Angew Chem Int Ed 54:13230–13235

    CAS  Google Scholar 

  293. Goossen-Schmidt NC, Schnieder M, Hüve J, Klingauf J (2020) Switching behaviour of dSTORM dyes in glycerol-containing buffer. Sci Rep 10(1):1–8

    Google Scholar 

  294. Uno SN, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan MC, Fujita H, Funatsu T, Okada Y, Tobita S, Urano Y (2014) A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 6:681–689

    CAS  PubMed  Google Scholar 

  295. Uno SN, Kamiya M, Morozumi A, Urano Y (2017) A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging. Chem Commun 54:102–105

    Google Scholar 

  296. Morozumi A, Kamiya M, Uno SN, Umezawa K, Kojima R, Yoshihara T, Tobita S, Urano Y (2020) Spontaneously blinking fluorophores based on nucleophilic addition/dissociation of intracellular glutathione for live-cell super-resolution imaging. J Am Chem Soc 142:9625–9633

    CAS  PubMed  Google Scholar 

  297. Thiel Z, Rivera-Fuentes P (2018) Photochemically active dyes for super-resolution microscopy. Chimia (Aarau) 72:764–770

    CAS  PubMed  Google Scholar 

  298. Li B, Haris U, Aljowni M, Nakatsuka A, Patel SK, Lippert AR (2021) Tuning the photophysical properties of spirolactam rhodamine photoswitches. Isr J Chem 61:244–252

    CAS  Google Scholar 

  299. Fölling J, Belov V, Kunetsky R, Medda R, Schönle A, Egner A, Eggeling C, Bossi M, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed Engl 46:6266–6270

    PubMed  Google Scholar 

  300. Bossi M, Föiling J, Belov VN, Boyarskiy VP, Medda R, Egner A, Eggeling C, Schönle A, Hell SW (2008) Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8:2463–2468

    CAS  PubMed  Google Scholar 

  301. Belov VN, Bossi ML, Fölling J, Boyarskiy VP, Hell SW (2009) Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chem – A Eur J 15:10762–10776

    CAS  Google Scholar 

  302. Uno K, Aktalay A, Bossi ML, Irie M, Belov VN, Hell SW (2021) Turn-on mode diarylethenes for bioconjugation and fluorescence microscopy of cellular structures. Proc Natl Acad Sci U S A 118:2100165118

    Google Scholar 

  303. Hauke S, Von Appen A, Quidwai T, Ries J, Wombacher R (2016) Specific protein labeling with caged fluorophores for dual-color imaging and super-resolution microscopy in living cells. Chem Sci 8:559–566

    PubMed  PubMed Central  Google Scholar 

  304. Jang S, Kim M, Shim SH (2020) Reductively caged, photoactivatable DNA-PAINT for high-throughput super-resolution microscopy. Angew Chem Int Ed 59:11758–11762

    CAS  Google Scholar 

  305. Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J (2013) Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 113:119–191

    PubMed  Google Scholar 

  306. Banala S, Maurel D, Manley S, Johnsson K (2012) A caged, localizable rhodamine derivative for superresolution microscopy. ACS Chem Biol 7:289–293

    CAS  PubMed  Google Scholar 

  307. Butkevich AN, Weber M, Cereceda Delgado AR, Ostersehlt LM, D’Este E, Hell SW (2021) Photoactivatable fluorescent dyes with hydrophilic caging groups and their use in multicolor nanoscopy. J Am Chem Soc 143:18388–18393

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  PubMed  Google Scholar 

  309. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94:108101

    PubMed  PubMed Central  Google Scholar 

  311. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci 104:20308–20313

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, Milkie DE, Beach JR, Hammer JA, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu P, Betzig E (2015) Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251):aab3500

    PubMed  PubMed Central  Google Scholar 

  313. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102:17565–17569

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Sarmento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarmento, M.J., Fernandes, F. (2022). Choosing the Right Fluorescent Probe. In: Šachl, R., Amaro, M. (eds) Fluorescence Spectroscopy and Microscopy in Biology. Springer Series on Fluorescence, vol 20. Springer, Cham. https://doi.org/10.1007/4243_2022_30

Download citation

Publish with us

Policies and ethics