Skip to main content

A Quantitative Approach to Applications of Electronic Energy Transfer (EET)

  • Chapter
  • First Online:
Fluorescence Spectroscopy and Microscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 20))

  • 682 Accesses

Abstract

In brief, the Förster theory (FT) of electronic energy transfer (EET) between/among fluorescent and non-fluorescent molecules is discussed.

Here the EFT concerns applications for quantitative studies of biomolecular systems, in particular lipid membranes and proteins. The EET may take place within pairs of chromophores, as well as within random or regularly ordered distributions of chromophores. Described and exemplified are also relations between experimental data and theories.

Discussed finally are suggestions that aim at further extending the applicability of the FT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DAET:

Donor to acceptor energy transfer, also referred to as hetero FRET

DDEM:

Donor–donor energy migration, also referred to as homo fluorescence resonance energy transfer (FRET)

EET:

Electronic energy transfer

FT:

Förster’s theory

MC:

Monte Carlo

References

  1. Cario G (1922) Z Physik 10:185

    Article  CAS  Google Scholar 

  2. Weiss J (1938) Nature 141:248

    Article  CAS  Google Scholar 

  3. Weiss J (1939) Trans Faraday Soc 35:48

    Article  CAS  Google Scholar 

  4. Förster T (1948) Ann Phys Berlin 2:55

    Article  Google Scholar 

  5. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York

    Book  Google Scholar 

  6. Mikaelsson T, Ådén J, Wittung-Stafshede P, Johansson LB-Å (2014) Biophys J 107:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bergström F, Hägglöf P, Karolin J, Ny T, Johansson LB-Å (1999) PNAS 96:12477

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kubo R (1969) Stochastic processes in chemical physics. Advances in chemical physics, vol XVI, Shuler KE (ed). Wiley, New York

    Google Scholar 

  9. Johansson LB-Å, Edman P, Westlund P-O (1992) J Chem Phys 105:10896

    Article  Google Scholar 

  10. Isaksson M, Hägglöf P, Håkansson P, Ny T, Johansson LB-Å (2007) PCCP 9:3914

    Article  CAS  PubMed  Google Scholar 

  11. Gouchanour CR, Andersen HC, Fayer MD (1979) J Chem Phys 70:4254

    Article  Google Scholar 

  12. Engström S, Lindberg M, Johansson LB-Å (1988) J Chem Phys 89:204

    Article  Google Scholar 

  13. Johansson LB-Å, Engström S, Lindberg M (1992) J Chem Phys 96:3844

    Article  CAS  Google Scholar 

  14. Baumann J, Fayer MD (1986) J Chem Phys 85:4087

    Article  CAS  Google Scholar 

  15. Hammond AT, Herbele FA, Baumgart T, Holowka D, Baird B, Feigenson GW (2005) PNAS USA 102:6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sachl R, Johansson LB-Å, Hof M (2012) Int J Mol Sci 13:16141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lorentz M, Popp D, Holmes KC (1993) J Mol Biol 234:826

    Article  Google Scholar 

  18. Marushchak D, Grenklo S, Johansson T, Karlsson R, Johansson LB-Å (2007) Biophys J 93:3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Charbonneau P (1995) Astrophys J Suppl Ser 101:309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart B.-Å. Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johansson, L.BÅ. (2022). A Quantitative Approach to Applications of Electronic Energy Transfer (EET). In: Šachl, R., Amaro, M. (eds) Fluorescence Spectroscopy and Microscopy in Biology. Springer Series on Fluorescence, vol 20. Springer, Cham. https://doi.org/10.1007/4243_2022_28

Download citation

Publish with us

Policies and ethics