Skip to main content

Single-Molecule Microscopy Methods to Study Mitochondrial Processes

  • Chapter
  • First Online:
Fluorescence Spectroscopy and Microscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 20))

  • 733 Accesses

Abstract

Mitochondria are essential organelles of eukaryotic cells with key functions in metabolism, apoptosis, and signaling. As a result, impaired mitochondrial function has been associated with numerous diseases. In order to understand mitochondrial processes, it is fundamental to gain knowledge about their structure and microcompartmentalization, including the function, organization, and dynamics of their protein, nucleic acid, and lipid components. A number of recent groundbreaking advances in fluorescence microscopy enable the study of mitochondrial biology with unprecedented detail. Among them, new methods based on single-molecule and super-resolution microscopy allow us to study mitochondrial structures, protein organizations, and dynamics. Here, we discuss the advantages and disadvantages of different single-molecule microscopy methods to study individual proteins in fixed and living cells in the background of mitochondrial processes, in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159ā€“161

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617ā€“644

    Google ScholarĀ 

  3. Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10ā€“21

    Google ScholarĀ 

  4. Hess ST, Gould TJ, Gunewardene M, Bewersdorf J, Mason MD (2009) Ultra-high resolution imaging of biomolecules by fluorescence photoactivation localization microscopy (FPALM). Methods Mol Biol 544:483ā€“522

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642ā€“1645

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258ā€“4272

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Jungmann R, Steinhauer C, Scheible MB, Kuzyk A, Tinnefeld P, Simmel FC (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10(11):4756ā€“4761

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:1047ā€“1052

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793ā€“796

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Schnitzbauer J et al (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6):1198ā€“1228

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021ā€“2040

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910ā€“921

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Gƶtzke H et al (2019) The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun 10:4403

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Nieves DJ et al (2019) tagPAINT: covalent labelling of genetically encoded protein tags for DNA-PAINT imaging. R Soc Open Sci 6(12):191268

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Schlichthaerle T et al (2019) Direct visualization of single nuclear pore complex proteins using genetically-encoded probes for DNA-PAINT. Angew Chem Int Ed 58:13004ā€“13008

    CASĀ  Google ScholarĀ 

  16. Heilemann M, Sauer M (2017) Single-molecule localization microscopy in eukaryotes. Chem Rev 117(11):7478ā€“7509

    PubMedĀ  Google ScholarĀ 

  17. Salvador-Gallego R et al (2016) Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J 35:389ā€“401

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Gierlich J et al (2006) Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org Lett 8(17):3639ā€“3642

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Thorek DLJ, Elias DR, Tsourkas A (2009) Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry. Mol Imaging 8(4):221ā€“229

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Agasti SS, Wang Y, Schueder F, Sukumar A, Jungmann R, Yin P (2017) DNA-barcoded labelling probes for highly multiplexed Exchange-PAINT imaging. Chem Sci 8(4):3080ā€“3091. https://doi.org/10.1039/C6SC05420J

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Lelek M, Gyparaki MT, Beliu G et al (2021) Single-molecule localization microscopy. Nat Rev Methods Primers 1:39

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Stehr F et al (2021) Tracking single particles for hours via continuous DNA-mediated fluorophore exchange. Nat Commun 12:4432

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Appelhans T et al (2012) Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. Nano Lett 12:610ā€“616

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Deich J, Judd EM, McAdams HH, Moerner WE (2004) Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. PNAS 101:15921ā€“15926

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Gahlmann A, Moerner WE (2014) Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat Rev Microbiol 12:9ā€“22

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Manley S et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155ā€“157

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. SchĆ¼tz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073ā€“1080

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. SergĆ© A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687ā€“694

    PubMedĀ  Google ScholarĀ 

  29. Shen H et al (2017) Single particle tracking: from theory to biophysical applications. Chem Rev 117:7331ā€“7376

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132:6481ā€“6491

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Kuzmenko A et al (2011) Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40. Sci Rep 1:195

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Appelhans T, Busch K (2017) Single molecule tracking and localization of mitochondrial protein complexes in live cells. Methods Mol Biol 1567:273ā€“291

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Salewskij K et al (2020) The spatio-temporal organization of mitochondrial F1FO ATP synthase in cristae depends on its activity mode. Biochim Biophys Acta Bioenerg 1861:148091

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Pavani SRP et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:2995ā€“2999

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. von Diezmann L, Shechtman Y, Moerner WE (2017) Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem Rev 117:7244ā€“7275

    Google ScholarĀ 

  36. Beinlich FRM, Drees C, Piehler J, Busch KB (2015) Shuttling of PINK1 between mitochondrial microcompartments resolved by triple-color superresolution microscopy. ACS Chem Biol 10:1970ā€“1976

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Appelhans T, Beinlich FRM, Richter CP, Kurre R, Busch KB (2018) Multi-color localization microscopy of single membrane proteins in organelles of live mammalian cells. J Vis Exp 136:57690. https://doi.org/10.3791/57690

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Appelhans T, Busch KB (2017) Dynamic imaging of mitochondrial membrane proteins in specific sub-organelle membrane locations. Biophys Rev 9:345ā€“352

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Kondadi AK, Anand R et al (2020) Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent manner. EMBO Rep 21:e49776

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Subburaj Y et al (2015) Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat Commun 6:8042

    CASĀ  PubMedĀ  Google ScholarĀ 

  41. Cheney PP, Weisgerber AW, Feuerbach AM, Knowles MK (2017) Single lipid molecule dynamics on supported lipid bilayers with membrane curvature. Membranes (Basel) 7:15

    PubMedĀ  Google ScholarĀ 

  42. Jungmann R et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11(3):313ā€“318

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Balzarotti F et al (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606ā€“612

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Gwosch KC et al (2020) MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 17:217ā€“224

    CASĀ  PubMedĀ  Google ScholarĀ 

  45. Landes CF, Kelly KF, Moringo NA, Tauzin LJ, Hoener BS, Shuang B, Wang W (2016) Super temporal-resolved microscopy (STReM). J Phys Chem Lett 7(22):4524ā€“4529

    PubMedĀ  Google ScholarĀ 

  46. Wilmes S et al (2015) Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. J Cell Biol 209:579ā€“593

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Spahn C et al (2018) Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett 19(1):500ā€“505

    PubMedĀ  Google ScholarĀ 

  48. Hell SW, Ries J, Ellenberg J, Hoess P, Balzarotti F, Pape JK, Gwosch KC (2020) MINFLUX nanoscopy delivers 3D multicolour nanometer resolution in cells. Nat Methods 17:217ā€“224

    PubMedĀ  Google ScholarĀ 

  49. Thevathasan JV, Kahnwald M, Cieśliński K, Hoess P, Peneti SK, Reitberger M, Heid D, Kasuba KC, Hoerner SJ, Li Y, Wu Y-L, Mund M, Matti U, Pereira PM, Henriques R, Nijmeijer B, Kueblbeck M, Sabinina VJ, Ellenberg J, Ries J (2019) Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat Methods 16(10):1045ā€“1053. https://doi.org/10.1038/s41592-019-0574-9

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Ibarra A, Hetzer MW (2015) Nuclear pore proteins and the control of genome functions. Genes Dev 29:337ā€“349

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Szymborska A et al (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655ā€“658

    CASĀ  PubMedĀ  Google ScholarĀ 

  52. Sabinina VJ et al (2021) Three-dimensional superresolution fluorescence microscopy maps the variable molecular architecture of the nuclear pore complex. MBoC 32:1523ā€“1533

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Pape JK et al (2020) Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. PNAS 117:20607ā€“20614

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW (2018) MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. PNAS 115:6117ā€“6122

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Schmidt R et al (2021) MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat Commun 12:1478

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Huang X, Fan J, Li L et al (2018) Fast, long-term, super-resolution imaging with hessian structured illumination microscopy. Nat Biotechnol 36:451ā€“459

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana J. Garcia SaƩz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dellmann, T., Kostina, A., Garcia SaĆ©z, A.J. (2022). Single-Molecule Microscopy Methods to Study Mitochondrial Processes. In: Å achl, R., Amaro, M. (eds) Fluorescence Spectroscopy and Microscopy in Biology. Springer Series on Fluorescence, vol 20. Springer, Cham. https://doi.org/10.1007/4243_2022_23

Download citation

Publish with us

Policies and ethics