Photoluminescent Glasses and Their Applications

Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 18)


Glass materials are very attractive for the development of eco-friendly, engineer safe, and fully recyclable smart materials. Photoluminescent glass applies these unique properties to photonics, lighting, and photovoltaics by applying light down-conversion from UV to visible or near-infrared light, suitable for devices, smart windows, and LEDs, among many other applications. Furthermore, enhanced optical properties can be achieved with enamel coatings or by deposition of phosphors, increasing the range of light harvesting of glass materials. This book chapter discusses current methods to synthesize photoluminescent glass and phosphors with a strong focus on the use of alternative raw materials and how they are introduced in such applications to achieve high photoluminescence performances (such as quantum efficiency, Stokes shifts, and brightness). Novel approaches such as quantum dots or photoluminescent zeolites promise new ways to develop luminescence, avoiding the use of critical raw materials such as lanthanides. Examples such as LEDs, light solar concentrators for photovoltaics, and art or design are given, showing the wide range of applications of optical smart glass.


Art Light management applications Luminescent glass Phosphors Photoluminescence 



The authors would like to thank the Associate Laboratory for Green Chemistry—LAQV and the research unit Glass and Ceramic for the Arts—Vicarte, which are financed by national funds from FCT/MCTES (UID/QUI/50006/2019 and UID/EAT/00729/2019). They would also like to thank the Portuguese FCT-MCTES for the financial support from PTDC/QEQ-QIN/3007/2014, and the EC is acknowledged for the INFUSION project grant N. 734834 under H2020-MSCA-RISE-2016 and DecoChrom project under Grant Agreement No. 760973.


  1. 1.
    Compilation of ASTM Standard Definitions (1990) 7th edn. ASTM, PhiladelphiaGoogle Scholar
  2. 2.
    Doremus RH (1994) Glass science, 2nd edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Paul A (1990) Chemistry of glasses, 2nd edn. Chapman and Hall, New YorkGoogle Scholar
  4. 4.
    Shelby J (1997) Introduction to glass science and technology. The Royal Society of Chemistry, CambridgeGoogle Scholar
  5. 5.
    Varshneya A (2006) Fundamentals of inorganic glasses, 2nd edn. Society of Glass Technology, SheffieldGoogle Scholar
  6. 6.
    Turro N (1965) Molecular photochemistry. W.A. Benjamin, MassachusettsGoogle Scholar
  7. 7.
    Gilbert A, Baggott J (1995) Essentials of molecular photochemistry. Blackwell Science, OxfordCrossRefGoogle Scholar
  8. 8.
    Qiu J, Makishima A (2003) Ultraviolet-radiation-induced structure and long-lasting phosphorescence in Sn2+–Cu2+ co-doped silicate glass. Sci Technol Adv Mater 4:35–38. CrossRefGoogle Scholar
  9. 9.
    Sakai R, Katsumata T, Komuro S, Morikawa T (1999) Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals. J Lumin 85:149–154. CrossRefGoogle Scholar
  10. 10.
    Kurkjian CR, Prindle WR (1998) Perspectives on the history of glass composition. J Am Ceram Soc 81:795–813. CrossRefGoogle Scholar
  11. 11.
    Lole F (1995) Uranium glass in 1817—a pre-Riedel record. J Glass Stud 37:139–140Google Scholar
  12. 12.
    Lopes F, Ruivo A, Muralha VSF, Lima A, Duarte P, Paiva I, Trindade R, Pires de Matos A (2008) Uranium glass in museum collections. J Cult Herit 9:e64–e68. CrossRefGoogle Scholar
  13. 13.
    Weyl WA (1951) Coloured glasses. Society of Glass Technology, SheffieldGoogle Scholar
  14. 14.
    Riker LW (1981) The use of rare earths in glass compositions. In: Gschneidner Jr KA (ed) Industrial applications of rare earth elements. American Chemical Society, Washington, pp 81–94. CrossRefGoogle Scholar
  15. 15.
    Gorller-Walrand C, Binnemans K (1998) Spectral intensities of f–f transitions. In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 25. Elsevier Science B.V., Amsterdam, pp 101–264Google Scholar
  16. 16.
    Carnall WT (1979) The absorption and fluorescence spectra of rare earth ions in solution. In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland Physics Publishing, AmsterdamGoogle Scholar
  17. 17.
    Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32:5851–5887. CrossRefGoogle Scholar
  18. 18.
    Charalampides G, Vatalis KI, Apostoplos B, Ploutarch-Nikolas B (2015) Rare earth elements: industrial applications and economic dependency of Europe. Procedia Econ Finan 24:126–135. CrossRefGoogle Scholar
  19. 19.
    Eliseeva SV, Bünzli JCG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227. CrossRefGoogle Scholar
  20. 20.
    Zhang F (2015) Photon upconversion nanomaterials. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Ceroni P (2011) Energy up-conversion by low-power excitation: new applications of an old concept. Chem Eur J 17:9560–9564. CrossRefPubMedGoogle Scholar
  22. 22.
    Liu X, Zhou J, Zhou S, Yue Y, Qiu J (2018) Transparent glass-ceramics functionalized by dispersed crystals. Prog Mater Sci 97:38–96. CrossRefGoogle Scholar
  23. 23.
    Ruivo A, Muralha VSF, Águas H, Pires de Matos A, Laia CAT (2014) Time-resolved luminescence studies of Eu3+ in soda-lime silicate glasses. J Quant Spectrosc Radiat Transf 134:29–38. CrossRefGoogle Scholar
  24. 24.
    Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stößer R, Pacchioni G (2008) Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology 19:135701. CrossRefPubMedGoogle Scholar
  25. 25.
    Yen WM, Shionoya S, Yamamoto H (2007) Phosphor handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Rong-Jun X, Hirosaki N, Li Y, Takeda T (2010) Rare-earth activated nitride phosphors: synthesis, luminescence and applications. Materials 3:3777–3793. CrossRefGoogle Scholar
  27. 27.
    Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103.<3084::AID-ANIE3084>3.0.CO;2-W CrossRefGoogle Scholar
  28. 28.
    Ronda CR (2008) Emission and excitation mechanisms of phosphors in luminescence: from theory to applications. In: Ronda CR (ed) Luminescence. Wiley-VCH, Weinheim. CrossRefGoogle Scholar
  29. 29.
    Lin H, Liang H, Zhang G, Tao Y (2012) A comparison of Ce3+ luminescence in X2Z(BO3)2 (X=Ba, Sr; Z=Ca, Mg) with relevant composition and structure. J Rare Earths 30:1–5. CrossRefGoogle Scholar
  30. 30.
    McKittrick J, Shea-Rohwe LE (2014) Review: down conversion materials for solid-state lighting. J Am Ceram Soc 97:1327–1352. CrossRefGoogle Scholar
  31. 31.
    Pimputkar S, Speck J, Denbaars S, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182. CrossRefGoogle Scholar
  32. 32.
    Kim YH, Viswanath NSM, Unithrattil S, Kim HJ, Im WB (2018) Review-phosphor plates for high-power LED applications: challenges and opportunities toward perfect lighting. J Solid State Sci Technol 7:R3134–R3147. CrossRefGoogle Scholar
  33. 33.
    Khan TQ, Bodrogi P, Vinh QT, Winkler H (2014) LED lighting: technology and perception. Wiley, Weinheim. CrossRefGoogle Scholar
  34. 34.
    Wang L, Xie RJ, Suehiro T, Takeda T, Hirosak N (2018) Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem Rev 118:1951–2009. CrossRefPubMedGoogle Scholar
  35. 35.
    Chen L, Lin CC, Yeh CW, Liu RS (2010) Light converting inorganic phosphors for white light-emitting diodes. Materials 3:2172–2195. CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chiriu D, Stagi L, Carbonaro CM, Ricci PC (2016) Strength and weakness of rare earths based phosphors: strategies to replace critical raw materials. Phys Status Solidi C 13:989–997. CrossRefGoogle Scholar
  37. 37.
    Zhang X, Wang J, Huang L, Pan F, Chen Y, Lei B, Peng M, Wu M (2015) Tunable luminescent properties and concentration-dependent, site-preferable distribution of Eu2+ ions in silicate glass for white LEDs applications. Appl Mater Interfaces 7:10044–10054. CrossRefGoogle Scholar
  38. 38.
    Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions on the 2017 list of critical raw materials for the EU, Brussels.
  39. 39.
    Pavitra E, Raju GSR, Park JY, Wang L, Moon BK, Yu JS (2015) Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light emitting diodes. Sci Rep 5:10296. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Stanish PC, Radovanovic PV (2016) Surface-enabled energy transfer in Ga2O3−CdSe/CdS nanocrystal composite films: tunable all-inorganic rare earth element-free white-emitting phosphor. J Phys Chem C 120:19566–19573. CrossRefGoogle Scholar
  41. 41.
    Ishigaki T, Madhusudan P, Kamei S, Uematsu K, Toda K, Sato M (2018) Room-temperature solid state contact reaction synthesis of rare earth free RbVO3 phosphor and their photoluminescence properties. J Solid State Sci Technol 7:R88–R93. CrossRefGoogle Scholar
  42. 42.
    Hasegawa T, Abe Y, Koizumi A, Ueda T, Toda K, Sato M (2018) Bluish-white luminescence in rare-earth-free vanadate garnet phosphors: structural characterization of LiCa3MV3O12 (M = Zn and Mg). Inorg Chem 57:857–866. CrossRefPubMedGoogle Scholar
  43. 43.
    Hide F, Kozodoy P, DenBaars SP, Heeger AJ (1997) White light from InGaN/conjugated polymer hybrid light-emitting diodes. Appl Phys Lett 70:2664–2666. CrossRefGoogle Scholar
  44. 44.
    Heliotis G, Gu E, Griffin C, Jeon CW, Stavrinou PN, Dawson MD, Bradley DDC (2006) Wavelength-tunable and white-light emission from polymer-converted micropixellated InGaN ultraviolet light-emitting diodes. J Opt A Pure Appl Opt 8:S445–S449. CrossRefGoogle Scholar
  45. 45.
    Li J, Lin J, Huang Y, Xu X, Liu Z, Xue Y, Ding X, Luo H, Jin P, Zhang J, Zou J, Tang C (2015) Organic fluorescent dyes supported on activated boron nitride: a promising blue light excited phosphors for high-performance white light-emitting diodes. Sci Rep 5:8492. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940. CrossRefPubMedGoogle Scholar
  47. 47.
    Carlos LD, Ferreira RAS, Bermudez VZ, Ribeiro SJL (2009) Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv Mater 21:21509–21534. CrossRefGoogle Scholar
  48. 48.
    Gong Q, Hu Z, Deibert BJ, Emge TJ, Teat SJ, Banerjee D, Mussman B, Rudd ND, Li J (2014) Solution processable MOF yellow phosphor with exceptionally high quantum efficiency. J Am Chem Soc 136:16724–16727. CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang X, Wang J, Huang L, Pan F, Chen Y, Lei B, Peng M, Wu M (2015) Tunable luminescent properties and concentration-dependent, site-preferable distribution of Eu2+ ions in silicate glass for white LEDs applications. ACS Appl Mater Interfaces 7:10044–10054. CrossRefPubMedGoogle Scholar
  50. 50.
    Peng Y, Mou Y, Wang H, Zhuo Y, Lid H, Chen M, Luo X (2018) Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting. J Eur Ceram Soc 38:5525–5532. CrossRefGoogle Scholar
  51. 51.
    Xu X, Li H, Zhuo Y, Li R, Tian P, Xiong D, Chen M (2018) High refractive index coating of phosphor-in-glass for enhanced light extraction efficiency of white LEDs. J Mater Sci 53:1335–1345. CrossRefGoogle Scholar
  52. 52.
    Zhang R, Lin H, Yu Y, Chen D, Xu J, Wang Y (2014) A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass. Laser Photonics Rev 8:158–164. CrossRefGoogle Scholar
  53. 53.
    Zhang X, Yu J, Wang J, Lei B, Liu Y, Cho Y, Xie RJ, Zhang HW, Li Y, Tian Z, Li Y, Su Q (2017) All-inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs. ACS Photonics 4:986–995. CrossRefGoogle Scholar
  54. 54.
    Chen Z, Wang B, Li X, Huang D, Sun H, Zeng Q (2018) Chromaticity-tunable and thermal stable phosphor-in-glass inorganic color converter for high power warm w-LEDs. Materials 11:1792. CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Wang B, Lin H, Xu J, Chen H, Wang Y (2014) CaMg2Al16O27:Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED. ACS Appl Mater Interfaces 6:22905–22913. CrossRefPubMedGoogle Scholar
  56. 56.
    Chen H, Lin H, Xu J, Wang B, Lin Z, Zhou J, Wang Y (2015) Chromaticity-tunable phosphor-in-glass for long-lifetime high-power warm w-LEDs. J Mater Chem C 3:8080–8089. CrossRefGoogle Scholar
  57. 57.
    Coutiño-Gonzalez E, Baekelant W, Steele JA, Kim CW, Roeffaers MBJ, Hofkens J (2017) Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties. Acc Chem Res 50:2353–2361. CrossRefPubMedGoogle Scholar
  58. 58.
    Kirk RD (1955) The luminescence and tenebrescence of natural and synthetic sodalite. Am Mineral 40:22–31Google Scholar
  59. 59.
    Ruivo A, Coutino-Gonzalez E, Santos MM, Baekelant W, Fron E, Roeffaers MBJ, Pina F, Hofkens J, Laia CAT (2018) Highly photoluminescent sulfide clusters confined in zeolites. J Phys Chem C 122:14761–14770. CrossRefGoogle Scholar
  60. 60.
    Zhu C, Yang Y, Liang X, Yuan S, Chen G (2007) Rare earth ions doped full-color luminescence glasses for white LED. J Lumin 126:707–710. CrossRefGoogle Scholar
  61. 61.
    Silva Jr CM, Bueno LA, Gouveia-Neto AS (2015) Er3+/Sm3+- and Tb3+/Sm3+-doped glass phosphors for application in warm white light-emitting diode. J Non-Cryst Solids 410:151–154. CrossRefGoogle Scholar
  62. 62.
    Cheng Y, Shen C, Shen L, Xiang W, Liang X (2018) Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs. ACS Appl Mater Interfaces 10:21434–21444. CrossRefPubMedGoogle Scholar
  63. 63.
    Xu DK, Shi YF, Peng XS, Wei RF, Hu FF, Guo H (2018) Tunable broad photoluminescence in Cu+/Mn2+ co-doped oxyfluoride glasses sintered in air atmosphere. J Lumin 202:186–119. CrossRefGoogle Scholar
  64. 64.
    Monk P, Mortimer R, Rosseinsky D (2007) Electrochromism and electrochromic devices. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  65. 65.
    Aliprandi A, Moreira T, Anichini C, Stoeckel MA, Eredia M, Sassi U, Bruna M, Pinheiro C, Laia CAT, Bonacchi S, Samorì P (2017) Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics. Adv Mater 29:1703225. CrossRefGoogle Scholar
  66. 66.
    Costa C, Pinheiro C, Henriques I, Laia CAT (2012) Inkjet printing of sol–gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces 4(3):1330–1340. CrossRefPubMedGoogle Scholar
  67. 67.
    Kraft A (2019) Electrochromism: a fascinating branch of electrochemistry. ChemTexts 5:1. CrossRefGoogle Scholar
  68. 68.
    Xia X, Ku Z, Zhou D, Zhong Y, Zhang Y, Wang Y, Huang MJ, Tu J, Fan HJ (2016) Perovskite solar cell powered electrochromic batteries for smart windows. Mater Horiz 3:588–595. CrossRefGoogle Scholar
  69. 69.
    Garwin RL (1960) The collection of light from scintillation counters. Rev Sci Instrum 31:1010–1011. CrossRefGoogle Scholar
  70. 70.
    Weber WH, Lambe J (1976) Luminescent greenhouse collector for solar radiation. Appl Opt 15:2299–2300. CrossRefPubMedGoogle Scholar
  71. 71.
    Batchelder JS, Zewail AH, Cole T (1981) Luminescent solar concentrators. 2: experimental and theoretical analysis of their possible efficiencies. Appl Opt 20:3733–3754. CrossRefPubMedGoogle Scholar
  72. 72.
    Correia SFH, Bermudez VZ, Ribeiro SJL, André PS, Ferreira RAS, Carlos LD (2014) Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. J Mater Chem A 2:5580. CrossRefGoogle Scholar
  73. 73.
    Debije MG, Verbunt PPC (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35. CrossRefGoogle Scholar
  74. 74.
    Ritter A (2009) Smart materials in architecture, interior architecture and design. Birkhäuser, BaselGoogle Scholar
  75. 75.
    Addington DM, Schodek DL (2005) Smart materials and new technologies for the architecture and design professions. Architectural Press, OxfordGoogle Scholar
  76. 76.
    Shiess C (1994) The light artist anthology-neon and related media. ST Publications, CincinnatiGoogle Scholar
  77. 77.
    Exhibition Catalogue (2015) Within light/inside glass, an intersection between art and science. Fundação Millennium Gallery, LisbonGoogle Scholar
  78. 78.
    Reis PC (1999) In: Sternberg M, Tighe H (eds) Pedro Cabrita Reis: on light and space, catalogue of exhibition at Museum Moderner Kunst Wien and Museu de Arte Contemporânea de Serralves. Charta, MilanGoogle Scholar
  79. 79.
    Almeida T, Ruivo A, Pires de Matos A, Oliveira R, Antunes A (2008) Luminescent glasses in art. J Cult Herit 9:e138–e142. CrossRefGoogle Scholar
  80. 80.
    Gorller-Walrand C, Binnemans K (1998) Handbook on the physics and chemistry of rare earths, vol 25. Elsevier Science B.V., Amsterdam, pp 101–264Google Scholar
  81. 81.
    Ruivo A, Almeida T, Quintas F, Wiley R, Troeira M, Paulino N, Laia CAT, Queiroz CA, Pires de Matos A (2013) Colours of luminescent glasses for artworks. In: MacDonald L, Westland S, Wuerger S (eds) Proceedings of the 12th international AIC colour congress, pp 885–888Google Scholar
  82. 82.
    Almeida T (2013) Art/science: a case study of luminescent vitreous materials. In: Proceedings of the VI world congress on communication and arts, Geelong, 4–7 Apr 2012.
  83. 83.
    Rossi S, Quaranta A, Tavella L, Deflorian F, Compagnoni AM (2015) Innovative luminescent vitreous enameled coatings. In: Tiwari A, Rawlins J, Hihara LH (eds) Intelligent coatings for corrosion control. Butterworth-Heinemann, Oxford. CrossRefGoogle Scholar
  84. 84.
    Stone G (2000) Firing schedules for glass: the kiln companion, 1st edn. Igneous Glassworks, MelbourneGoogle Scholar
  85. 85.
    Bamfield P, Hutchings MG (2010) Chromic phenomena—technological applications of colour chemistry, 1st edn. RSC Publishing, CambridgeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LAQV@REQUIMTE, Chemistry Department, Faculty of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
  2. 2.Research Unit VICARTE, Glass and Ceramics for the Arts, Faculty of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal

Personalised recommendations