Skip to main content

Photoluminescent Glasses and Their Applications

  • Chapter
  • First Online:
Fluorescence in Industry

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 18))

Abstract

Glass materials are very attractive for the development of eco-friendly, engineer safe, and fully recyclable smart materials. Photoluminescent glass applies these unique properties to photonics, lighting, and photovoltaics by applying light down-conversion from UV to visible or near-infrared light, suitable for devices, smart windows, and LEDs, among many other applications. Furthermore, enhanced optical properties can be achieved with enamel coatings or by deposition of phosphors, increasing the range of light harvesting of glass materials. This book chapter discusses current methods to synthesize photoluminescent glass and phosphors with a strong focus on the use of alternative raw materials and how they are introduced in such applications to achieve high photoluminescence performances (such as quantum efficiency, Stokes shifts, and brightness). Novel approaches such as quantum dots or photoluminescent zeolites promise new ways to develop luminescence, avoiding the use of critical raw materials such as lanthanides. Examples such as LEDs, light solar concentrators for photovoltaics, and art or design are given, showing the wide range of applications of optical smart glass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Compilation of ASTM Standard Definitions (1990) 7th edn. ASTM, Philadelphia

    Google Scholar 

  2. Doremus RH (1994) Glass science, 2nd edn. Wiley, New York

    Google Scholar 

  3. Paul A (1990) Chemistry of glasses, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  4. Shelby J (1997) Introduction to glass science and technology. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  5. Varshneya A (2006) Fundamentals of inorganic glasses, 2nd edn. Society of Glass Technology, Sheffield

    Google Scholar 

  6. Turro N (1965) Molecular photochemistry. W.A. Benjamin, Massachusetts

    Google Scholar 

  7. Gilbert A, Baggott J (1995) Essentials of molecular photochemistry. Blackwell Science, Oxford

    Book  Google Scholar 

  8. Qiu J, Makishima A (2003) Ultraviolet-radiation-induced structure and long-lasting phosphorescence in Sn2+–Cu2+ co-doped silicate glass. Sci Technol Adv Mater 4:35–38. https://doi.org/10.1016/S1468-6996(03)00008-1

    Article  CAS  Google Scholar 

  9. Sakai R, Katsumata T, Komuro S, Morikawa T (1999) Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals. J Lumin 85:149–154. https://doi.org/10.1016/S0022-2313(99)00061-7

    Article  CAS  Google Scholar 

  10. Kurkjian CR, Prindle WR (1998) Perspectives on the history of glass composition. J Am Ceram Soc 81:795–813. https://doi.org/10.1111/j.1151-2916.1998.tb02415.x

    Article  CAS  Google Scholar 

  11. Lole F (1995) Uranium glass in 1817—a pre-Riedel record. J Glass Stud 37:139–140

    Google Scholar 

  12. Lopes F, Ruivo A, Muralha VSF, Lima A, Duarte P, Paiva I, Trindade R, Pires de Matos A (2008) Uranium glass in museum collections. J Cult Herit 9:e64–e68. https://doi.org/10.1016/j.culher.2008.08.009

    Article  Google Scholar 

  13. Weyl WA (1951) Coloured glasses. Society of Glass Technology, Sheffield

    Google Scholar 

  14. Riker LW (1981) The use of rare earths in glass compositions. In: Gschneidner Jr KA (ed) Industrial applications of rare earth elements. American Chemical Society, Washington, pp 81–94. https://doi.org/10.1021/bk-1981-0164.ch004

    Chapter  Google Scholar 

  15. Gorller-Walrand C, Binnemans K (1998) Spectral intensities of f–f transitions. In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 25. Elsevier Science B.V., Amsterdam, pp 101–264

    Google Scholar 

  16. Carnall WT (1979) The absorption and fluorescence spectra of rare earth ions in solution. In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland Physics Publishing, Amsterdam

    Google Scholar 

  17. Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32:5851–5887. https://doi.org/10.1023/A:1018646507438

    Article  CAS  Google Scholar 

  18. Charalampides G, Vatalis KI, Apostoplos B, Ploutarch-Nikolas B (2015) Rare earth elements: industrial applications and economic dependency of Europe. Procedia Econ Finan 24:126–135. https://doi.org/10.1016/S2212-5671(15)00630-9

    Article  Google Scholar 

  19. Eliseeva SV, Bünzli JCG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227. https://doi.org/10.1039/b905604c

    Article  CAS  Google Scholar 

  20. Zhang F (2015) Photon upconversion nanomaterials. Springer, Berlin

    Book  Google Scholar 

  21. Ceroni P (2011) Energy up-conversion by low-power excitation: new applications of an old concept. Chem Eur J 17:9560–9564. https://doi.org/10.1002/chem.201101102

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Zhou J, Zhou S, Yue Y, Qiu J (2018) Transparent glass-ceramics functionalized by dispersed crystals. Prog Mater Sci 97:38–96. https://doi.org/10.1016/j.pmatsci.2018.02.006

    Article  CAS  Google Scholar 

  23. Ruivo A, Muralha VSF, Águas H, Pires de Matos A, Laia CAT (2014) Time-resolved luminescence studies of Eu3+ in soda-lime silicate glasses. J Quant Spectrosc Radiat Transf 134:29–38. https://doi.org/10.1016/j.jqsrt.2013.10.010

    Article  CAS  Google Scholar 

  24. Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stößer R, Pacchioni G (2008) Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology 19:135701. https://doi.org/10.1088/0957-4484/19/13/135701

    Article  CAS  PubMed  Google Scholar 

  25. Yen WM, Shionoya S, Yamamoto H (2007) Phosphor handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  26. Rong-Jun X, Hirosaki N, Li Y, Takeda T (2010) Rare-earth activated nitride phosphors: synthesis, luminescence and applications. Materials 3:3777–3793. https://doi.org/10.3390/ma3063777

    Article  CAS  Google Scholar 

  27. Jüstel T, Nikol H, Ronda C (1998) New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103. https://doi.org/10.1002/(SICI)1521-3773(19981204)37:22<3084::AID-ANIE3084>3.0.CO;2-W

    Article  Google Scholar 

  28. Ronda CR (2008) Emission and excitation mechanisms of phosphors in luminescence: from theory to applications. In: Ronda CR (ed) Luminescence. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527621064.ch1

    Chapter  Google Scholar 

  29. Lin H, Liang H, Zhang G, Tao Y (2012) A comparison of Ce3+ luminescence in X2Z(BO3)2 (X=Ba, Sr; Z=Ca, Mg) with relevant composition and structure. J Rare Earths 30:1–5. https://doi.org/10.1016/S1002-0721(10)60627-8

    Article  CAS  Google Scholar 

  30. McKittrick J, Shea-Rohwe LE (2014) Review: down conversion materials for solid-state lighting. J Am Ceram Soc 97:1327–1352. https://doi.org/10.1111/jace.12943

    Article  CAS  Google Scholar 

  31. Pimputkar S, Speck J, Denbaars S, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182. https://doi.org/10.1038/nphoton.2009.32

    Article  CAS  Google Scholar 

  32. Kim YH, Viswanath NSM, Unithrattil S, Kim HJ, Im WB (2018) Review-phosphor plates for high-power LED applications: challenges and opportunities toward perfect lighting. J Solid State Sci Technol 7:R3134–R3147. https://doi.org/10.1149/2.0181801jss

    Article  CAS  Google Scholar 

  33. Khan TQ, Bodrogi P, Vinh QT, Winkler H (2014) LED lighting: technology and perception. Wiley, Weinheim. https://doi.org/10.1002/9783527670147

    Book  Google Scholar 

  34. Wang L, Xie RJ, Suehiro T, Takeda T, Hirosak N (2018) Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem Rev 118:1951–2009. https://doi.org/10.1021/acs.chemrev.7b00284

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Lin CC, Yeh CW, Liu RS (2010) Light converting inorganic phosphors for white light-emitting diodes. Materials 3:2172–2195. https://doi.org/10.3390/ma3032172

    Article  CAS  PubMed Central  Google Scholar 

  36. Chiriu D, Stagi L, Carbonaro CM, Ricci PC (2016) Strength and weakness of rare earths based phosphors: strategies to replace critical raw materials. Phys Status Solidi C 13:989–997. https://doi.org/10.1002/pssc.201600116

    Article  CAS  Google Scholar 

  37. Zhang X, Wang J, Huang L, Pan F, Chen Y, Lei B, Peng M, Wu M (2015) Tunable luminescent properties and concentration-dependent, site-preferable distribution of Eu2+ ions in silicate glass for white LEDs applications. Appl Mater Interfaces 7:10044–10054. https://doi.org/10.1021/acsami.5b02550

    Article  CAS  Google Scholar 

  38. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions on the 2017 list of critical raw materials for the EU, Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2017:0490:FIN

  39. Pavitra E, Raju GSR, Park JY, Wang L, Moon BK, Yu JS (2015) Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light emitting diodes. Sci Rep 5:10296. https://doi.org/10.1038/srep10296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stanish PC, Radovanovic PV (2016) Surface-enabled energy transfer in Ga2O3−CdSe/CdS nanocrystal composite films: tunable all-inorganic rare earth element-free white-emitting phosphor. J Phys Chem C 120:19566–19573. https://doi.org/10.1021/acs.jpcc.6b07035

    Article  CAS  Google Scholar 

  41. Ishigaki T, Madhusudan P, Kamei S, Uematsu K, Toda K, Sato M (2018) Room-temperature solid state contact reaction synthesis of rare earth free RbVO3 phosphor and their photoluminescence properties. J Solid State Sci Technol 7:R88–R93. https://doi.org/10.1149/2.0201806jss

    Article  CAS  Google Scholar 

  42. Hasegawa T, Abe Y, Koizumi A, Ueda T, Toda K, Sato M (2018) Bluish-white luminescence in rare-earth-free vanadate garnet phosphors: structural characterization of LiCa3MV3O12 (M = Zn and Mg). Inorg Chem 57:857–866. https://doi.org/10.1021/acs.inorgchem.7b02820

    Article  CAS  PubMed  Google Scholar 

  43. Hide F, Kozodoy P, DenBaars SP, Heeger AJ (1997) White light from InGaN/conjugated polymer hybrid light-emitting diodes. Appl Phys Lett 70:2664–2666. https://doi.org/10.1063/1.118989

    Article  CAS  Google Scholar 

  44. Heliotis G, Gu E, Griffin C, Jeon CW, Stavrinou PN, Dawson MD, Bradley DDC (2006) Wavelength-tunable and white-light emission from polymer-converted micropixellated InGaN ultraviolet light-emitting diodes. J Opt A Pure Appl Opt 8:S445–S449. https://doi.org/10.1088/1464-4258/8/7/S20

    Article  CAS  Google Scholar 

  45. Li J, Lin J, Huang Y, Xu X, Liu Z, Xue Y, Ding X, Luo H, Jin P, Zhang J, Zou J, Tang C (2015) Organic fluorescent dyes supported on activated boron nitride: a promising blue light excited phosphors for high-performance white light-emitting diodes. Sci Rep 5:8492. https://doi.org/10.1038/srep08492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940. https://doi.org/10.1039/c0cs00130a

    Article  CAS  PubMed  Google Scholar 

  47. Carlos LD, Ferreira RAS, Bermudez VZ, Ribeiro SJL (2009) Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv Mater 21:21509–21534. https://doi.org/10.1002/adma.200801635

    Article  CAS  Google Scholar 

  48. Gong Q, Hu Z, Deibert BJ, Emge TJ, Teat SJ, Banerjee D, Mussman B, Rudd ND, Li J (2014) Solution processable MOF yellow phosphor with exceptionally high quantum efficiency. J Am Chem Soc 136:16724–16727. https://doi.org/10.1021/ja509446h

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Wang J, Huang L, Pan F, Chen Y, Lei B, Peng M, Wu M (2015) Tunable luminescent properties and concentration-dependent, site-preferable distribution of Eu2+ ions in silicate glass for white LEDs applications. ACS Appl Mater Interfaces 7:10044–10054. https://doi.org/10.1021/acsami.5b02550

    Article  CAS  PubMed  Google Scholar 

  50. Peng Y, Mou Y, Wang H, Zhuo Y, Lid H, Chen M, Luo X (2018) Stable and efficient all-inorganic color converter based on phosphor in tellurite glass for next-generation laser-excited white lighting. J Eur Ceram Soc 38:5525–5532. https://doi.org/10.1016/j.jeurceramsoc.2018.08.014

    Article  CAS  Google Scholar 

  51. Xu X, Li H, Zhuo Y, Li R, Tian P, Xiong D, Chen M (2018) High refractive index coating of phosphor-in-glass for enhanced light extraction efficiency of white LEDs. J Mater Sci 53:1335–1345. https://doi.org/10.1007/s1085

    Article  CAS  Google Scholar 

  52. Zhang R, Lin H, Yu Y, Chen D, Xu J, Wang Y (2014) A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass. Laser Photonics Rev 8:158–164. https://doi.org/10.1002/lpor.201300140

    Article  CAS  Google Scholar 

  53. Zhang X, Yu J, Wang J, Lei B, Liu Y, Cho Y, Xie RJ, Zhang HW, Li Y, Tian Z, Li Y, Su Q (2017) All-inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs. ACS Photonics 4:986–995. https://doi.org/10.1021/acsphotonics.7b00049

    Article  CAS  Google Scholar 

  54. Chen Z, Wang B, Li X, Huang D, Sun H, Zeng Q (2018) Chromaticity-tunable and thermal stable phosphor-in-glass inorganic color converter for high power warm w-LEDs. Materials 11:1792. https://doi.org/10.3390/ma11101792

    Article  PubMed Central  Google Scholar 

  55. Wang B, Lin H, Xu J, Chen H, Wang Y (2014) CaMg2Al16O27:Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED. ACS Appl Mater Interfaces 6:22905–22913. https://doi.org/10.1021/am507316b

    Article  CAS  PubMed  Google Scholar 

  56. Chen H, Lin H, Xu J, Wang B, Lin Z, Zhou J, Wang Y (2015) Chromaticity-tunable phosphor-in-glass for long-lifetime high-power warm w-LEDs. J Mater Chem C 3:8080–8089. https://doi.org/10.1039/C5TC01057H

    Article  CAS  Google Scholar 

  57. Coutiño-Gonzalez E, Baekelant W, Steele JA, Kim CW, Roeffaers MBJ, Hofkens J (2017) Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties. Acc Chem Res 50:2353–2361. https://doi.org/10.1021/acs.accounts.7b00295

    Article  CAS  PubMed  Google Scholar 

  58. Kirk RD (1955) The luminescence and tenebrescence of natural and synthetic sodalite. Am Mineral 40:22–31

    CAS  Google Scholar 

  59. Ruivo A, Coutino-Gonzalez E, Santos MM, Baekelant W, Fron E, Roeffaers MBJ, Pina F, Hofkens J, Laia CAT (2018) Highly photoluminescent sulfide clusters confined in zeolites. J Phys Chem C 122:14761–14770. https://doi.org/10.1021/acs.jpcc.8b01247

    Article  CAS  Google Scholar 

  60. Zhu C, Yang Y, Liang X, Yuan S, Chen G (2007) Rare earth ions doped full-color luminescence glasses for white LED. J Lumin 126:707–710. https://doi.org/10.1016/j.jlumin.2006.10.028

    Article  CAS  Google Scholar 

  61. Silva Jr CM, Bueno LA, Gouveia-Neto AS (2015) Er3+/Sm3+- and Tb3+/Sm3+-doped glass phosphors for application in warm white light-emitting diode. J Non-Cryst Solids 410:151–154. https://doi.org/10.1016/j.jnoncrysol.2014.08.054

    Article  CAS  Google Scholar 

  62. Cheng Y, Shen C, Shen L, Xiang W, Liang X (2018) Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs. ACS Appl Mater Interfaces 10:21434–21444. https://doi.org/10.1021/acsami.8b05003

    Article  CAS  PubMed  Google Scholar 

  63. Xu DK, Shi YF, Peng XS, Wei RF, Hu FF, Guo H (2018) Tunable broad photoluminescence in Cu+/Mn2+ co-doped oxyfluoride glasses sintered in air atmosphere. J Lumin 202:186–119. https://doi.org/10.1016/j.jlumin.2018.05.050

    Article  CAS  Google Scholar 

  64. Monk P, Mortimer R, Rosseinsky D (2007) Electrochromism and electrochromic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  65. Aliprandi A, Moreira T, Anichini C, Stoeckel MA, Eredia M, Sassi U, Bruna M, Pinheiro C, Laia CAT, Bonacchi S, Samorì P (2017) Hybrid copper-nanowire–reduced-graphene-oxide coatings: a “green solution” toward highly transparent, highly conductive, and flexible electrodes for (opto)electronics. Adv Mater 29:1703225. https://doi.org/10.1002/adma.201703225

    Article  CAS  Google Scholar 

  66. Costa C, Pinheiro C, Henriques I, Laia CAT (2012) Inkjet printing of sol–gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces 4(3):1330–1340. https://doi.org/10.1021/am201606m

    Article  CAS  PubMed  Google Scholar 

  67. Kraft A (2019) Electrochromism: a fascinating branch of electrochemistry. ChemTexts 5:1. https://doi.org/10.1007/s40828-018-0076-x

    Article  CAS  Google Scholar 

  68. Xia X, Ku Z, Zhou D, Zhong Y, Zhang Y, Wang Y, Huang MJ, Tu J, Fan HJ (2016) Perovskite solar cell powered electrochromic batteries for smart windows. Mater Horiz 3:588–595. https://doi.org/10.1039/C6MH00159A

    Article  CAS  Google Scholar 

  69. Garwin RL (1960) The collection of light from scintillation counters. Rev Sci Instrum 31:1010–1011. https://doi.org/10.1063/1.1717105

    Article  Google Scholar 

  70. Weber WH, Lambe J (1976) Luminescent greenhouse collector for solar radiation. Appl Opt 15:2299–2300. https://doi.org/10.1364/AO.15.002299

    Article  CAS  PubMed  Google Scholar 

  71. Batchelder JS, Zewail AH, Cole T (1981) Luminescent solar concentrators. 2: experimental and theoretical analysis of their possible efficiencies. Appl Opt 20:3733–3754. https://doi.org/10.1364/AO.20.003733

    Article  CAS  PubMed  Google Scholar 

  72. Correia SFH, Bermudez VZ, Ribeiro SJL, André PS, Ferreira RAS, Carlos LD (2014) Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. J Mater Chem A 2:5580. https://doi.org/10.1039/c3ta14964a

    Article  CAS  Google Scholar 

  73. Debije MG, Verbunt PPC (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35. https://doi.org/10.1002/aenm.201100554

    Article  CAS  Google Scholar 

  74. Ritter A (2009) Smart materials in architecture, interior architecture and design. Birkhäuser, Basel

    Google Scholar 

  75. Addington DM, Schodek DL (2005) Smart materials and new technologies for the architecture and design professions. Architectural Press, Oxford

    Google Scholar 

  76. Shiess C (1994) The light artist anthology-neon and related media. ST Publications, Cincinnati

    Google Scholar 

  77. Exhibition Catalogue (2015) Within light/inside glass, an intersection between art and science. Fundação Millennium Gallery, Lisbon

    Google Scholar 

  78. Reis PC (1999) In: Sternberg M, Tighe H (eds) Pedro Cabrita Reis: on light and space, catalogue of exhibition at Museum Moderner Kunst Wien and Museu de Arte Contemporânea de Serralves. Charta, Milan

    Google Scholar 

  79. Almeida T, Ruivo A, Pires de Matos A, Oliveira R, Antunes A (2008) Luminescent glasses in art. J Cult Herit 9:e138–e142. https://doi.org/10.1016/j.culher.2008.06.002

    Article  Google Scholar 

  80. Gorller-Walrand C, Binnemans K (1998) Handbook on the physics and chemistry of rare earths, vol 25. Elsevier Science B.V., Amsterdam, pp 101–264

    Google Scholar 

  81. Ruivo A, Almeida T, Quintas F, Wiley R, Troeira M, Paulino N, Laia CAT, Queiroz CA, Pires de Matos A (2013) Colours of luminescent glasses for artworks. In: MacDonald L, Westland S, Wuerger S (eds) Proceedings of the 12th international AIC colour congress, pp 885–888

    Google Scholar 

  82. Almeida T (2013) Art/science: a case study of luminescent vitreous materials. In: Proceedings of the VI world congress on communication and arts, Geelong, 4–7 Apr 2012. https://doi.org/10.14684/WCCA.6.2013.12-16

  83. Rossi S, Quaranta A, Tavella L, Deflorian F, Compagnoni AM (2015) Innovative luminescent vitreous enameled coatings. In: Tiwari A, Rawlins J, Hihara LH (eds) Intelligent coatings for corrosion control. Butterworth-Heinemann, Oxford. https://doi.org/10.1016/C2012-0-06936-0

    Chapter  Google Scholar 

  84. Stone G (2000) Firing schedules for glass: the kiln companion, 1st edn. Igneous Glassworks, Melbourne

    Google Scholar 

  85. Bamfield P, Hutchings MG (2010) Chromic phenomena—technological applications of colour chemistry, 1st edn. RSC Publishing, Cambridge

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Associate Laboratory for Green Chemistry—LAQV and the research unit Glass and Ceramic for the Arts—Vicarte, which are financed by national funds from FCT/MCTES (UID/QUI/50006/2019 and UID/EAT/00729/2019). They would also like to thank the Portuguese FCT-MCTES for the financial support from PTDC/QEQ-QIN/3007/2014, and the EC is acknowledged for the INFUSION project grant N. 734834 under H2020-MSCA-RISE-2016 and DecoChrom project under Grant Agreement No. 760973.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to César A. T. Laia or Andreia Ruivo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laia, C.A.T., Ruivo, A. (2019). Photoluminescent Glasses and Their Applications. In: Pedras, B. (eds) Fluorescence in Industry. Springer Series on Fluorescence, vol 18. Springer, Cham. https://doi.org/10.1007/4243_2019_12

Download citation

Publish with us

Policies and ethics