Skip to main content

The Use of 6-Acyl-2-(Dimethylamino)Naphthalenes as Relaxation Probes of Biological Environments

Part of the Springer Series on Fluorescence book series (SS FLUOR,volume 17)

Abstract

As Gregorio Weber anticipated in his seminal 1979 article, 6-acyl-2-(dimethylamino)naphthalene probes became excellent tools to study nanosecond relaxation processes of biological systems. Examples are the use of PRODAN (or DANCA) to study relaxation of specific protein matrixes, or LAURDAN (as well as PRODAN) extensively used to study the extent of water dipolar relaxation processes in biological membranes. In this chapter a novel application for this family of molecules is presented and discussed. Specifically, we show how these fluorescent probes can be used to monitor intracellular water dipolar relaxation in living cells displaying oscillatory metabolism. Our experimental results show a strong coupling between metabolism and intracellular water dynamics, challenging the view that water in the interior of cells exists mostly as a medium whose global properties are comparable to the properties of dilute solutions. The observed results can be very well interpreted in light of the association-induction hypothesis postulated by Gilbert Ling in 1962.

Keywords

  • ATP
  • Fluorescent probes
  • Glycolysis
  • Molecular crowding
  • Oscillatory metabolism
  • Water dipolar relaxation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/4243_2016_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41328-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ACDAN:

6-Acetyl-2-dimethylamine-naphthalene

DAN:

2-(Dimethylamino)-6-acylnaphtalenes

GP:

Generalized Polarization function

LAURDAN:

6-Dodecanoyl-2-dimethylamine-naphthalene

PRODAN:

6-Propionyl-2-dimethylamine-naphthalene

References

  1. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078

    CrossRef  CAS  Google Scholar 

  2. Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  3. Macgregor RB, Weber G (1981) Fluorophores in polar media: spectral effects of the Langevin distribution of electrostatic interactions. Ann NY Acad Sci 366:140–154

    CrossRef  CAS  Google Scholar 

  4. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12(21):4171–4179

    CrossRef  CAS  Google Scholar 

  5. Macgregor RB, Weber G (1986) Estimation of the polarity of the protein interior by optical spectroscopy. Nature 319(6048):70–73

    CrossRef  CAS  Google Scholar 

  6. Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem 258(12):7541–7544

    CAS  Google Scholar 

  7. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by LAURDAN fluorescence. J Fluoresc 5(1):59–69

    CrossRef  CAS  Google Scholar 

  8. Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) LAURDAN and PRODAN as polarity-sensitive fluorescent membrane probes. J Fluoresc 8(4):365–373

    CrossRef  CAS  Google Scholar 

  9. Zeng J, Chong PL (1995) Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan. Biophys J 68(2):567–573

    CrossRef  CAS  Google Scholar 

  10. Lakowicz JR, Bevan DR, Maliwal BP, Cherek H, Balter A (1983) Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes. Biochemistry 22:5714–5722

    CrossRef  CAS  Google Scholar 

  11. Jurkiewicz P, Sykora J, Olzynska A, Humpolickova J, Hof M (2005) Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluoresc 15(6):883–894

    CrossRef  CAS  Google Scholar 

  12. Kim HM et al (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8(5):553–559

    CrossRef  CAS  Google Scholar 

  13. Dodes Traian MM, Gonzalez Flecha L, Levi V (2012) Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. J Lipid Res 53(3):609–616

    CrossRef  Google Scholar 

  14. Thoke HS et al (2015) Tight coupling of metabolic oscillations and intracellular water dynamics in saccharomyces cerevisiae. PLoS One 10(2), e0117308

    CrossRef  Google Scholar 

  15. Parasassi T, Conti F, Gratton E (1986) Time-resolved fluorescence emission spectra of laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32(1):103–108

    CAS  Google Scholar 

  16. Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by laurdan fluorescence. Biophys J 57(6):1179–1186

    CrossRef  CAS  Google Scholar 

  17. Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of laurdan fluorescence. Biophys J 60(1):179–189

    CrossRef  CAS  Google Scholar 

  18. Parasassi T, Gratton E (1992) Packing of phospholipid vesicles studied by oxygen quenching of laurdan fluorescence. J Fluoresc 2(3):167–174

    CrossRef  CAS  Google Scholar 

  19. Antollini SS, Barrantes FJ (1998) Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane. Biochemistry 37(47):16653–16662

    CrossRef  CAS  Google Scholar 

  20. Jurkiewicz P, Olzynska A, Langner M, Hof M (2006) Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. Langmuir 22(21):8741–8749

    CrossRef  CAS  Google Scholar 

  21. Bagatolli LA (2013) LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope. In: Mely Y, Duportail G (eds) Fluorescent methods to study biological membranes, Springer series on fluorescence, vol 13. Springer, Heidelberg

    Google Scholar 

  22. Roenneberg T, Dragovic Z, Merrow M (2005) Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock. Proc Natl Acad Sci U S A 102(21):7742–7747

    CrossRef  CAS  Google Scholar 

  23. Jaeger J, Goodwin BC (2001) A cellular oscillator model for periodic pattern formation. J Theor Biol 213(2):171–181

    CrossRef  CAS  Google Scholar 

  24. Kruse K, Julicher F (2005) Oscillations in cell biology. Curr Opin Cell Biol 17(1):20–26

    CrossRef  CAS  Google Scholar 

  25. Goldbeter A (1996) Biochemical oscillations and cellular rhythms: the molecular basis of periodic and chaotic behaviour. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  26. Richard P (2003) The rhythm of yeast. FEMS Microbiol Rev 27(4):547–557

    CrossRef  CAS  Google Scholar 

  27. Richard P, Teusink B, Hemker MB, Van Dam K, Westerhoff HV (1996) Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast 12(8):731–740

    CrossRef  CAS  Google Scholar 

  28. Poulsen AK, Lauritsen FR, Olsen LF (2004) Sustained glycolytic oscillations–no need for cyanide. FEMS Microbiol Lett 236(2):261–266

    CAS  Google Scholar 

  29. Olsen LF, Andersen AZ, Lunding A, Brasen JC, Poulsen AK (2009) Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys J 96(9):3850–3861

    CrossRef  CAS  Google Scholar 

  30. Reijenga KA et al (2001) Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys J 80(2):626–634

    CrossRef  CAS  Google Scholar 

  31. Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991

    CrossRef  CAS  Google Scholar 

  32. Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246(2 Pt 2):R133–R151

    CAS  Google Scholar 

  33. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    CrossRef  CAS  Google Scholar 

  34. Fels J, Orlov SN, Grygorczyk R (2009) The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys J 96(10):4276–4285

    CrossRef  CAS  Google Scholar 

  35. Spitzer J (2011) From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 75(3):491–506, second page of table of contents

    Google Scholar 

  36. Hazlewood CF, Chang DC, Nichols BL, Woessner DE (1974) Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys J 14(8):583–606

    CrossRef  CAS  Google Scholar 

  37. Yoo H, Paranji R, Pollack GH (2011) Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy. J Phys Chem Lett 2(6):532–536

    CrossRef  CAS  Google Scholar 

  38. Kiser PF, Wilson G, Needham D (1998) A synthetic mimic of the secretory granule for drug delivery. Nature 394(6692):459–462

    CrossRef  CAS  Google Scholar 

  39. Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci U S A 101(40):14408–14413

    CrossRef  CAS  Google Scholar 

  40. Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25

    CrossRef  CAS  Google Scholar 

  41. Zasetsky AY (2011) Dielectric relaxation in liquid water: two fractions or two dynamics? Phys Rev Lett 107(11):117601

    CrossRef  Google Scholar 

  42. Thomson JF (1963) Biological effects of deuterium. Pergamon, Oxford

    Google Scholar 

  43. Leterrier JF (2001) Water and the cytoskeleton. Cell Mol Biol 47(5):901–923

    CAS  Google Scholar 

  44. Korn ED, Carlier MF, Pantaloni D (1987) Actin polymerization and ATP hydrolysis. Science 238(4827):638–644

    CrossRef  CAS  Google Scholar 

  45. Stark BC, Wen KK, Allingham JS, Rubenstein PA, Lord M (2011) Functional adaptation between yeast actin and its cognate myosin motors. J Biol Chem 286(35):30384–30392

    CrossRef  CAS  Google Scholar 

  46. Frauenfelder H, Fenimore PW, Young RD (2007) Protein dynamics and function: insights from the energy landscape and solvent slaving. IUBMB Life 59(8–9):506–512

    CrossRef  CAS  Google Scholar 

  47. Frauenfelder H (2008) What determines the speed limit on enzyme catalysis? Nat Chem Biol 4(1):21–22

    CrossRef  CAS  Google Scholar 

  48. Frauenfelder H, Fenimore PW, Chen G, McMahon BH (2006) Protein folding is slaved to solvent motions. Proc Natl Acad Sci U S A 103(42):15469–15472

    CrossRef  CAS  Google Scholar 

  49. Ling GN (1962) A physical theory of the living state: the association-induction hypothesis. Blaisdell, New York

    Google Scholar 

  50. Schrödinger E (1944) What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge

    Google Scholar 

  51. Young RD, Fenimore PW (2011) Coupling of protein and environment fluctuations. Biochim Biophys Acta 1814(8):916–921

    CrossRef  CAS  Google Scholar 

  52. Ling G (2007) Nano-protoplasm: the ultimate unit of life. Physiol Chem Phys Med NMR 39(2):111–234

    CAS  Google Scholar 

  53. Ling G (1984) In search of the physical basis of life. Plenum, New York

    CrossRef  Google Scholar 

  54. Troshin AS (1966) Problems of cell permeability. Pergamon, Oxford

    Google Scholar 

  55. Beloussov LV (1989) Dynamical levels in developing systems. In: Goodwin B, Sibatani A, Webster G (eds) Dynamic structures in biology. Edinburgh University Press, Edinburgh

    Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Danish Research Council (FNU, 12-124751 0602-02507B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis A. Bagatolli or Roberto P. Stock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bagatolli, L.A., Stock, R.P. (2016). The Use of 6-Acyl-2-(Dimethylamino)Naphthalenes as Relaxation Probes of Biological Environments. In: Jameson, D. (eds) Perspectives on Fluorescence. Springer Series on Fluorescence, vol 17. Springer, Cham. https://doi.org/10.1007/4243_2016_7

Download citation