The Use of 6-Acyl-2-(Dimethylamino)Naphthalenes as Relaxation Probes of Biological Environments

Chapter
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 17)

Abstract

As Gregorio Weber anticipated in his seminal 1979 article, 6-acyl-2-(dimethylamino)naphthalene probes became excellent tools to study nanosecond relaxation processes of biological systems. Examples are the use of PRODAN (or DANCA) to study relaxation of specific protein matrixes, or LAURDAN (as well as PRODAN) extensively used to study the extent of water dipolar relaxation processes in biological membranes. In this chapter a novel application for this family of molecules is presented and discussed. Specifically, we show how these fluorescent probes can be used to monitor intracellular water dipolar relaxation in living cells displaying oscillatory metabolism. Our experimental results show a strong coupling between metabolism and intracellular water dynamics, challenging the view that water in the interior of cells exists mostly as a medium whose global properties are comparable to the properties of dilute solutions. The observed results can be very well interpreted in light of the association-induction hypothesis postulated by Gilbert Ling in 1962.

Keywords

ATP Fluorescent probes Glycolysis Molecular crowding Oscillatory metabolism Water dipolar relaxation 

Abbreviations

ACDAN

6-Acetyl-2-dimethylamine-naphthalene

DAN

2-(Dimethylamino)-6-acylnaphtalenes

GP

Generalized Polarization function

LAURDAN

6-Dodecanoyl-2-dimethylamine-naphthalene

PRODAN

6-Propionyl-2-dimethylamine-naphthalene

Notes

Acknowledgements

This work is supported by a grant from the Danish Research Council (FNU, 12-124751 0602-02507B).

References

  1. 1.
    Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078CrossRefGoogle Scholar
  2. 2.
    Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Elektrochem 61:962–975Google Scholar
  3. 3.
    Macgregor RB, Weber G (1981) Fluorophores in polar media: spectral effects of the Langevin distribution of electrostatic interactions. Ann NY Acad Sci 366:140–154CrossRefGoogle Scholar
  4. 4.
    Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12(21):4171–4179CrossRefGoogle Scholar
  5. 5.
    Macgregor RB, Weber G (1986) Estimation of the polarity of the protein interior by optical spectroscopy. Nature 319(6048):70–73CrossRefGoogle Scholar
  6. 6.
    Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem 258(12):7541–7544Google Scholar
  7. 7.
    Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by LAURDAN fluorescence. J Fluoresc 5(1):59–69CrossRefGoogle Scholar
  8. 8.
    Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) LAURDAN and PRODAN as polarity-sensitive fluorescent membrane probes. J Fluoresc 8(4):365–373CrossRefGoogle Scholar
  9. 9.
    Zeng J, Chong PL (1995) Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan. Biophys J 68(2):567–573CrossRefGoogle Scholar
  10. 10.
    Lakowicz JR, Bevan DR, Maliwal BP, Cherek H, Balter A (1983) Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes. Biochemistry 22:5714–5722CrossRefGoogle Scholar
  11. 11.
    Jurkiewicz P, Sykora J, Olzynska A, Humpolickova J, Hof M (2005) Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluoresc 15(6):883–894CrossRefGoogle Scholar
  12. 12.
    Kim HM et al (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8(5):553–559CrossRefGoogle Scholar
  13. 13.
    Dodes Traian MM, Gonzalez Flecha L, Levi V (2012) Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. J Lipid Res 53(3):609–616CrossRefGoogle Scholar
  14. 14.
    Thoke HS et al (2015) Tight coupling of metabolic oscillations and intracellular water dynamics in saccharomyces cerevisiae. PLoS One 10(2), e0117308CrossRefGoogle Scholar
  15. 15.
    Parasassi T, Conti F, Gratton E (1986) Time-resolved fluorescence emission spectra of laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol 32(1):103–108Google Scholar
  16. 16.
    Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by laurdan fluorescence. Biophys J 57(6):1179–1186CrossRefGoogle Scholar
  17. 17.
    Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of laurdan fluorescence. Biophys J 60(1):179–189CrossRefGoogle Scholar
  18. 18.
    Parasassi T, Gratton E (1992) Packing of phospholipid vesicles studied by oxygen quenching of laurdan fluorescence. J Fluoresc 2(3):167–174CrossRefGoogle Scholar
  19. 19.
    Antollini SS, Barrantes FJ (1998) Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane. Biochemistry 37(47):16653–16662CrossRefGoogle Scholar
  20. 20.
    Jurkiewicz P, Olzynska A, Langner M, Hof M (2006) Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. Langmuir 22(21):8741–8749CrossRefGoogle Scholar
  21. 21.
    Bagatolli LA (2013) LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope. In: Mely Y, Duportail G (eds) Fluorescent methods to study biological membranes, Springer series on fluorescence, vol 13. Springer, HeidelbergGoogle Scholar
  22. 22.
    Roenneberg T, Dragovic Z, Merrow M (2005) Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock. Proc Natl Acad Sci U S A 102(21):7742–7747CrossRefGoogle Scholar
  23. 23.
    Jaeger J, Goodwin BC (2001) A cellular oscillator model for periodic pattern formation. J Theor Biol 213(2):171–181CrossRefGoogle Scholar
  24. 24.
    Kruse K, Julicher F (2005) Oscillations in cell biology. Curr Opin Cell Biol 17(1):20–26CrossRefGoogle Scholar
  25. 25.
    Goldbeter A (1996) Biochemical oscillations and cellular rhythms: the molecular basis of periodic and chaotic behaviour. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Richard P (2003) The rhythm of yeast. FEMS Microbiol Rev 27(4):547–557CrossRefGoogle Scholar
  27. 27.
    Richard P, Teusink B, Hemker MB, Van Dam K, Westerhoff HV (1996) Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast 12(8):731–740CrossRefGoogle Scholar
  28. 28.
    Poulsen AK, Lauritsen FR, Olsen LF (2004) Sustained glycolytic oscillations–no need for cyanide. FEMS Microbiol Lett 236(2):261–266Google Scholar
  29. 29.
    Olsen LF, Andersen AZ, Lunding A, Brasen JC, Poulsen AK (2009) Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys J 96(9):3850–3861CrossRefGoogle Scholar
  30. 30.
    Reijenga KA et al (2001) Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys J 80(2):626–634CrossRefGoogle Scholar
  31. 31.
    Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991CrossRefGoogle Scholar
  32. 32.
    Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246(2 Pt 2):R133–R151Google Scholar
  33. 33.
    Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221CrossRefGoogle Scholar
  34. 34.
    Fels J, Orlov SN, Grygorczyk R (2009) The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys J 96(10):4276–4285CrossRefGoogle Scholar
  35. 35.
    Spitzer J (2011) From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 75(3):491–506, second page of table of contentsGoogle Scholar
  36. 36.
    Hazlewood CF, Chang DC, Nichols BL, Woessner DE (1974) Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys J 14(8):583–606CrossRefGoogle Scholar
  37. 37.
    Yoo H, Paranji R, Pollack GH (2011) Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy. J Phys Chem Lett 2(6):532–536CrossRefGoogle Scholar
  38. 38.
    Kiser PF, Wilson G, Needham D (1998) A synthetic mimic of the secretory granule for drug delivery. Nature 394(6692):459–462CrossRefGoogle Scholar
  39. 39.
    Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci U S A 101(40):14408–14413CrossRefGoogle Scholar
  40. 40.
    Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25CrossRefGoogle Scholar
  41. 41.
    Zasetsky AY (2011) Dielectric relaxation in liquid water: two fractions or two dynamics? Phys Rev Lett 107(11):117601CrossRefGoogle Scholar
  42. 42.
    Thomson JF (1963) Biological effects of deuterium. Pergamon, OxfordGoogle Scholar
  43. 43.
    Leterrier JF (2001) Water and the cytoskeleton. Cell Mol Biol 47(5):901–923Google Scholar
  44. 44.
    Korn ED, Carlier MF, Pantaloni D (1987) Actin polymerization and ATP hydrolysis. Science 238(4827):638–644CrossRefGoogle Scholar
  45. 45.
    Stark BC, Wen KK, Allingham JS, Rubenstein PA, Lord M (2011) Functional adaptation between yeast actin and its cognate myosin motors. J Biol Chem 286(35):30384–30392CrossRefGoogle Scholar
  46. 46.
    Frauenfelder H, Fenimore PW, Young RD (2007) Protein dynamics and function: insights from the energy landscape and solvent slaving. IUBMB Life 59(8–9):506–512CrossRefGoogle Scholar
  47. 47.
    Frauenfelder H (2008) What determines the speed limit on enzyme catalysis? Nat Chem Biol 4(1):21–22CrossRefGoogle Scholar
  48. 48.
    Frauenfelder H, Fenimore PW, Chen G, McMahon BH (2006) Protein folding is slaved to solvent motions. Proc Natl Acad Sci U S A 103(42):15469–15472CrossRefGoogle Scholar
  49. 49.
    Ling GN (1962) A physical theory of the living state: the association-induction hypothesis. Blaisdell, New YorkGoogle Scholar
  50. 50.
    Schrödinger E (1944) What is life? The physical aspect of the living cell. Cambridge University Press, CambridgeGoogle Scholar
  51. 51.
    Young RD, Fenimore PW (2011) Coupling of protein and environment fluctuations. Biochim Biophys Acta 1814(8):916–921CrossRefGoogle Scholar
  52. 52.
    Ling G (2007) Nano-protoplasm: the ultimate unit of life. Physiol Chem Phys Med NMR 39(2):111–234Google Scholar
  53. 53.
    Ling G (1984) In search of the physical basis of life. Plenum, New YorkCrossRefGoogle Scholar
  54. 54.
    Troshin AS (1966) Problems of cell permeability. Pergamon, OxfordGoogle Scholar
  55. 55.
    Beloussov LV (1989) Dynamical levels in developing systems. In: Goodwin B, Sibatani A, Webster G (eds) Dynamic structures in biology. Edinburgh University Press, EdinburghGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Membrane Biophysics and Biophotonics Group/MEMPHYS – Center for Biomembrane Physics, Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations