Advanced Photon Counting pp 225-239

Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 15) | Cite as

Multiple-Pulse Pumping with Time-Gated Detection for Enhanced Fluorescence Imaging in Cells and Tissue

  • Rafal Fudala
  • Ryan M. Rich
  • Joe Kimball
  • Ignacy Gryczynski
  • Sangram Raut
  • Julian Borejdo
  • Dorota L. Stankowska
  • Raghu R. Krishnamoorthy
  • Karol Gryczynski
  • Badri P. Maliwal
  • Zygmunt Gryczynski
Chapter

Abstract

Fluorescence-based sensing and imaging experiments are constrained by the background signal generated on a sample. A main contribution to the background, besides direct scattering of excitation and Raman scattering of the solvent, comes from sample autofluorescence and additives used for sample preparation. Such unwanted signals from endogenous chromophores and fixatives typically are broad and spectrally overlap with the probe signal; thus becoming a major limitation for sensitive detection and quantitative imaging. Since the fluorescence lifetimes of the majority of naturally occurring chromophores are relatively short, long-lived fluorophores allow for background discrimination by time-gated detection. Unfortunately, the brightness of long-lived, red-emitting fluorescent probes is inherently very low, consequently limiting many applications. Recently we reported a simple new approach with bursts of closely spaced laser excitation pulses for excitation (multi-pulse excitation) that allows for many-fold increase in the intensity of a long-lived probe over the background signal. This technology can be easily implemented for biomedical diagnostics and imaging to significantly enhance the signal of long-lived probes over the background. In this report, we are discussing an example of the Ruthenium-based dye tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Ru) (Sigma–Aldrich) (~2% quantum yield and ~350 ns fluorescence lifetime) that when used with the multi-pulse approach and time-gated detection allows for high quality imaging that can easily be enhanced two orders of magnitude as compared to the normal approach (imaging with typical fluorescence microscopy).

Keywords

Long lifetime probe Multi-pulse excitation Time-gated detection 

References

  1. 1.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Valeur B, Berberan-Santos M (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Jameson DM (2014) Introduction to fluorescence. CRC/Taylor and Francis Group, Boca RatonGoogle Scholar
  4. 4.
    Haugland RB (1996) Handbook of fluorescent probes. Molecular Probes Inc., EugeneGoogle Scholar
  5. 5.
    Nolting DD, Gore JC, Pham W (2011) Near-infrared dyes: probe development and applications in optical molecular imaging. Curr Org Synth 8:521–534CrossRefGoogle Scholar
  6. 6.
    Fischer GM, Isomaki-Krondahl M, Gottker-Schnetmann I et al (2009) Pyrrolopyrrole cyanine dyes: a new class of near-infrared dyes and fluorophores. Chem Eur J 15:4857–4864CrossRefGoogle Scholar
  7. 7.
    Achilefu S (2010) The insatiable quest for near-infrared fluorescent probes for molecular imaging. Angew Chem Int Ed 49:9816–9818CrossRefGoogle Scholar
  8. 8.
    Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730CrossRefGoogle Scholar
  9. 9.
    Clancy B, Cauller L (1998) Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods 8:97–102CrossRefGoogle Scholar
  10. 10.
    Cowen T, Haven AJ, Burnstock G (1985) Pontamine sky blue: a counterstain for background autofluorescence in fluorescence and immunofluorescence histochemistry. Histochemistry 82:205–208CrossRefGoogle Scholar
  11. 11.
    Schneckenburger H, Wagner M, Weber P et al (2004) Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode. J Fluoresc 14:649–654CrossRefGoogle Scholar
  12. 12.
    Rich RM, Gryczynski I, Fudala R et al (2013) Multiple-pulse pumping for enhanced fluorescence detection and molecular imaging in tissue. Methods 66(2):292–298CrossRefGoogle Scholar
  13. 13.
    Damas JN, DeGraff BA (1991) Design and applications of highly luminescent transition metal complexes. Anal Chem 17:829–837CrossRefGoogle Scholar
  14. 14.
    Laursen BW, Krebs FC (2001) Synthesis, structure, and properties of azatriangulenium salts. Chem Eur J 7:1773–1783CrossRefGoogle Scholar
  15. 15.
    Maliwal BP, Fudala R, Raut S et al (2013) Long-lived bright red emitting azaoxo-triangulenium fluorophores. PLoS One 8(5):e63043CrossRefGoogle Scholar
  16. 16.
    Kelloff GJ, Krohn KA, Larson SM et al (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985CrossRefGoogle Scholar
  17. 17.
    Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293:855–862CrossRefGoogle Scholar
  18. 18.
    Achilefu S (ed) (2010) Concept and strategies for molecular imaging. Chem Rev 110:2575–2755Google Scholar
  19. 19.
    Cubeddu R, Ramponi R, Taroni P et al (1990) Time-gated fluorescence spectroscopy of porphyrin derivatives incorporated into cells. J Photochem Photobiol B 6:39–48CrossRefGoogle Scholar
  20. 20.
    Periasamy A, Siadat-Pajouh M, Wodnicki P, Wang XF, Herman B (1995) Time-gated fluorescence microscopy in clinical imaging. Micros Anal (March):33–35Google Scholar
  21. 21.
    Dahan M, Laurence T, Pinaud F (2001) Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 26:825–827CrossRefGoogle Scholar
  22. 22.
    Terpetschnig E, Szmacinski H, Malak H et al (1995) Metal–ligand complexes as new class of long-lived fluorophores for protein hydrodynamics. Biophys J 68:342–350CrossRefGoogle Scholar
  23. 23.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775CrossRefGoogle Scholar
  24. 24.
    Seo J-T, Raut S, Abdel-Fattah M et al (2013) Time-resolved and temperature-dependent photoluminescence of ternary and quaternary nanocrystals of CuInS2 with ZnS capping and cation exchange. J Appl Phys 114:094310CrossRefGoogle Scholar
  25. 25.
    Rich RM, Stankowska DL, Maliwal BP et al (2013) Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Anal Bioanal Chem 405:2065–2075CrossRefGoogle Scholar
  26. 26.
    Shumilov D, Rich RM, Gryczynski I et al (2014) Generating multiple-pulse bursts for enhanced fluorescence detection. Methods Appl Fluoresc 2:024009CrossRefGoogle Scholar
  27. 27.
    Gryczynski I, Luchowski R, Bharill S et al (2009) Nonlinear curve-fitting methods for time-resolved data analysis. Chapter 12. FLIM microscopy in biology and medicine (Hardcover) by Ammasi Periasamy (ed), Robert M. Clegg (ed)Google Scholar
  28. 28.
    Niwa S, Takahashi H, Hirokawa N (2013) β-Tubulin mutations that cause severe neuropathies disrupt axonal transport. EMBO J 32:1352–1364CrossRefGoogle Scholar
  29. 29.
    Tischfield MA, Baris HN, Wu C et al (2010) Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74–87CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafal Fudala
    • 1
  • Ryan M. Rich
    • 1
  • Joe Kimball
    • 2
  • Ignacy Gryczynski
    • 1
  • Sangram Raut
    • 1
  • Julian Borejdo
    • 1
  • Dorota L. Stankowska
    • 1
  • Raghu R. Krishnamoorthy
    • 1
  • Karol Gryczynski
    • 1
  • Badri P. Maliwal
    • 1
  • Zygmunt Gryczynski
    • 1
    • 2
  1. 1.Department of Cell Biology and Immunology, Center for Fluorescence Technologies and NanomedicineUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Department of Physics and AstronomyTexas Christian UniversityFort WorthUSA

Personalised recommendations