Fluorescence Correlation Spectroscopy to Study Membrane Organization and Interactions

  • Monika Zelman-Femiak
  • Yamunadevi Subburaj
  • Ana J. García-SáezEmail author
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 13)


This chapter describes the application of fluorescence correlation spectroscopy (FCS) as a powerful technique for the study of membrane organization and interactions. Monitoring the fluorescence signal fluctuations allows resolving concentrations, diffusion coefficients, and binding of several membrane components in experiments in vitro as well as in vivo.

We discuss the basic principles of FCS and explain novel implementations of FCS introduced to overcome the technical difficulties present in the standard version of fluorescence correlation spectroscopy. Finally, we report several examples of studies with the application of FCS on both model and biological membranes to obtain interesting insight in the topic of lateral membrane organization and membrane interactions.


Chemical relaxation Diffusion Fluctuations Fluorescence Fluorescence correlation spectroscopy Interactions Membranes Triplet state 


  1. 1.
    Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708Google Scholar
  2. 2.
    Ehrenberg M, Rigler R (1974) Rotational Brownian motion and fluorescence intensity fluctuations. Chem Phys 4:390–401Google Scholar
  3. 3.
    Elson EL, Magde D, Elson EL, Magde D (1974) Fluorescence correlation spectroscopy I. Conceptual basis and theory. Biopolymers 13:1–27Google Scholar
  4. 4.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy II. An experimental realization. Biopolymers 13:29–61Google Scholar
  5. 5.
    Thompson NL (1991) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy techniques, vol 1. Plenum, New York, pp 337–378Google Scholar
  6. 6.
    Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22(3):159Google Scholar
  7. 7.
    Eigen M, Rigler M (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91:5740–5747Google Scholar
  8. 8.
    Rigler M (1995) Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J Biotechnol 41:177–186Google Scholar
  9. 9.
    Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297Google Scholar
  10. 10.
    Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson OT, Nygren PA, Stahl S, Ekberg K, Johansson BL, Uhlen S, Uhlen M, Jornvall H, Wahren J (1999) Proc Natl Acad Sci USA 96:13318Google Scholar
  11. 11.
    Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10(24):3487–3497Google Scholar
  12. 12.
    Enderlein J, Gregor I, Patra D, Dertinger T, Kaupp UB (2005) Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6:2324–2336Google Scholar
  13. 13.
    Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924Google Scholar
  14. 14.
    Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line scan FCS. Biophys J 96:1999–2008Google Scholar
  15. 15.
    Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614Google Scholar
  16. 16.
    Ayuyan AG, Cohen FS (2006) Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys J 91:2172–2183Google Scholar
  17. 17.
    Thompson NL, Steele BL (2007) Total internal reflection with fluorescence correlation spectroscopy. Nat Protoc 2:878–890Google Scholar
  18. 18.
    Ries J, Ruckstuhl T, Verdes D, Schwille P (2008) Supercritical angle fluorescence correlation spectroscopy. Biophys J 94:221–229Google Scholar
  19. 19.
    Medina MA, Schwille P (2002) Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays 24:758–764Google Scholar
  20. 20.
    Mayboroda OA, van Remoortere A, Tanke HJ, Hokke CH, Deelder AM (2003) A new approach for fluorescence correlation spectroscopy (FCS) based immunoassays. J Biotechnol 107:185–192Google Scholar
  21. 21.
    Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317Google Scholar
  22. 22.
    Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378Google Scholar
  23. 23.
    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081Google Scholar
  24. 24.
    Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182Google Scholar
  25. 25.
    Bouchaud JP, Georges A (1990) Anomalous diffusion in disordered media – statistical mechanisms, models and physical applications. Phys Rep Rev Sect Phys Lett 195:127–293Google Scholar
  26. 26.
    Saxton MJ (1994) Anomalous diffusion due to obstacles – a Monte-Carlo study. Biophys J 66:394–401Google Scholar
  27. 27.
    Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080Google Scholar
  28. 28.
    Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T (2005) Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin Immunol 17:3–21Google Scholar
  29. 29.
    BrustMascher I, Feder TJ, Slattery JP, Baird B, Webb WW (1993) FPR data on mobility of cell-surface proteins reevaluated in terms of temporally constrained molecular motions. Biophys J 64:A354Google Scholar
  30. 30.
    Kenworthy AK, Nichols BJ, Remmert CL, Hendrix GM, Kumar M, Zimmerberg J, Lippincott-Schwartz J (2004) Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol 165:735–746Google Scholar
  31. 31.
    Feder TJ, BrustMascher I, Slattery JP, Baird B, Webb WW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70:2767–2773Google Scholar
  32. 32.
    Tamm LK (1988) Lateral diffusion and fluorescence microscope studies on a monoclonal-antibody specifically bound to supported phospholipid-bilayers. Biochemistry 27:1450–1457Google Scholar
  33. 33.
    Nicolau DV, Hancock J, Burrage K (2008) Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys J 92:1975–1987Google Scholar
  34. 34.
    Berry H (2002) Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901Google Scholar
  35. 35.
    Weiss M, Hashimoto H, Nilsson T (2003) Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84:4043–4052Google Scholar
  36. 36.
    Gielen E, Vercammen J, Sykora J, Humpolickova J, Vandeven M, Benda A, Hellings N, Hof M, Hof M, Engelborghs Y, Steels P, Ameloot M (2005) Diffusion of sphingomyelin and myelin oligodendrocyte glycoprotein in the membrane of OLN-93 oligodendroglial cells studied by fluorescence correlation spectroscopy. C R Biol 328:1057–1064Google Scholar
  37. 37.
    Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 87:1034–1043Google Scholar
  38. 38.
    Gombos I, Steinbach GB, Pomozi I, Balogh A, Vamosi G, Gansen A, Laszlo G, Garab G, Matko J (2008) Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells. Cytometry A 73A:220–229Google Scholar
  39. 39.
    Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042Google Scholar
  40. 40.
    Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23–L25Google Scholar
  41. 41.
    Wenger J, Conchonaud F, Dintinger J, Wawrezinieck L, Ebbesen TW, Rigneault H, Marguet D, Lenne PF (2007) Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92:913–919Google Scholar
  42. 42.
    Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256Google Scholar
  43. 43.
    Schwille P (2001) Cross-correlation analysis in FCS. In: Elson EL, Rigler R, Elson EL, Rigler R (eds) Fluorescence correlation spectroscopy. Theory and applications. Springer, Berlin/New York, pp 360–378Google Scholar
  44. 44.
    Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2(11):2842–2856Google Scholar
  45. 45.
    Bacia K, Kim S, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3:83–89Google Scholar
  46. 46.
    Remaut K, Lucas B, Braeckmans K, Sanders NN, De Smedt SC, Demeester J (2005) FRET-FCS as a tool to evaluate the stability of oligonucleotide drugs after intracellular delivery. J Contr Release 103(1):259–271Google Scholar
  47. 47.
    Mashaghi A et al (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95(11):5476–5486Google Scholar
  48. 48.
    Berland KM, So PT, Chen Y, Mantulin WW, Gratton E (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71:410–420Google Scholar
  49. 49.
    Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448Google Scholar
  50. 50.
    Wiseman PW, Squier JA, Ellisman MH, Wilson KR (2000) Two-photon video rate image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS). J Microsc 200:14–25Google Scholar
  51. 51.
    Petersen NO, Höddelius PL, Wiseman PW, Seger O, Magnusson KE (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146Google Scholar
  52. 52.
    Hebert B, Constantino S, Wiseman PW (2005) Spatio-temporal image correlation spectroscopy (STICS): theory, verification and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614Google Scholar
  53. 53.
    Kolin DL, Ronis D, Wiseman PW (2006) k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics. Biophys J 91(8):3061–3075Google Scholar
  54. 54.
    Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36Google Scholar
  55. 55.
    Skinner JP, Chen Y, Mueller JD (2005) Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89(2):1288–1301Google Scholar
  56. 56.
    Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87:1260–1267Google Scholar
  57. 57.
    Berglund A, Mabuchi H (2005) Tracking-FCS: fluorescence correlation spectroscopy of individual particles. Opt Express 13:8069–8082Google Scholar
  58. 58.
    Ries J, Yu SR, Burkhardt M, Brand M, Schwille P (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6(9):643–645Google Scholar
  59. 59.
    Sisan DR, Arevalo R, Graves C, McAllister R, Urbach JS (2006) Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys J 91(11):4241–4252Google Scholar
  60. 60.
    Kannan B, Guo L, Sudhaharan T, Ahmed S, Maruyama I, Wohland T (2007) Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem 79(12):4463–4470Google Scholar
  61. 61.
    Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689Google Scholar
  62. 62.
    Lieto AM, Thompson NL (2004) Total internal reflection with fluorescence correlation spectroscopy: nonfluorescent competitors. Biophys J 87(2):1268–1278Google Scholar
  63. 63.
    Capoulade J, Wachsmuth M, Hufnagel L, Knop M (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29(9):835–839Google Scholar
  64. 64.
    Lieto AM, Cush RC, Thompson NL (2003) Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys J 85:3294–3302Google Scholar
  65. 65.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210Google Scholar
  66. 66.
    Kastrup L, Blom H, Eggeling C, Hell SW (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94:178104Google Scholar
  67. 67.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162Google Scholar
  68. 68.
    Gielen E, van de Ven M, Margineanu A, Dedecker P, Van der Auweraer M, Engelborghs Y, Hofkens J, Ameloot M (2009) On the use of Z-scan fluorescence correlation experiments on giant unilamellar vesicles. Chem Phys Lett 469(1–3):110–114Google Scholar
  69. 69.
    Singer SJ, Nicolson GL (1972) Fluid mosaic model of structure of cell-membranes. Science 175:720–721Google Scholar
  70. 70.
    Vereb G et al (2003) Dynamic, yet structured: the cell membrane three decades after the Singer–Nicolson model. Proc Natl Acad Sci USA 100:8053–8058Google Scholar
  71. 71.
    Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma-membranes of mammalian-cells. Annu Rev Biophys Biophys Chem 14:361–386Google Scholar
  72. 72.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572Google Scholar
  73. 73.
    Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589Google Scholar
  74. 74.
    Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta Biomembr 1788:64–71Google Scholar
  75. 75.
    Ramstedt B, Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta Biomembr 1758:1945–1956Google Scholar
  76. 76.
    Vigh L, Escriba PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horvath I, Harwood JL (2005) The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res 44:303–344Google Scholar
  77. 77.
    Marguet D, Lenne PF, Rigneault H, He HT (2006) Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25:3446–3457Google Scholar
  78. 78.
    Blanchette CD, Lin WC, Ratto TV, Longo ML (2006) Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions. Biophys J 90:4466–4478Google Scholar
  79. 79.
    Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136Google Scholar
  80. 80.
    García-Sáez AJ, Carrer DC, Schwille P (2010) Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. Methods Mol Biol 606:493–508Google Scholar
  81. 81.
    García-Sáez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46(2):116–122Google Scholar
  82. 82.
    Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295Google Scholar
  83. 83.
    Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278(30):28109–28115Google Scholar
  84. 84.
    Ariola FS, Li Z, Cornejo C, Bittman R, Heikal AA (2009) Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 96(7):2696–2708Google Scholar
  85. 85.
    Chiantia S, Schwille P, Klymchenko AS, London E (2011) Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study. Biophys J 100(1):L1–L3Google Scholar
  86. 86.
    Kubiak J, Brewer J, Hansen S, Bagatolli LA (2011) Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides. Biophys J 100(4):978–986Google Scholar
  87. 87.
    Yurlova L et al (2011) Self-segregation of myelin membrane lipids in model membranes. Biophys J 101(11):2713–2720Google Scholar
  88. 88.
    Tai WY et al (2010) Interplay between structure and fluidity of model lipid membranes under oxidative attack. J Phys Chem B 114(47):15642–15649Google Scholar
  89. 89.
    Kahya N, Brown DA, Schwille P (2005) Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44(20):7479–7489Google Scholar
  90. 90.
    Stachowiak JC et al (2011) Targeting proteins to liquid-ordered domains in lipid membranes. Langmuir 27(4):1457–1462Google Scholar
  91. 91.
    García-Sáez AJ, Ries J, Orzáez M, Pérez-Payà E, Schwille P (2009) Membrane promotes tBID interaction with BCLXL. Nat Struct Mol Biol 16:1178–1185Google Scholar
  92. 92.
    Betaneli V, Petrov EP, Schwille P (2012) The role of lipids in VDAC oligomerization. Biophys J 102(3):523–531Google Scholar
  93. 93.
    Kedrov A et al (2011) A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 30:4387–4397Google Scholar
  94. 94.
    Chiantia S, Kahya N, Ries J, Schwille P (2006) Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 90:4500–4508Google Scholar
  95. 95.
    Jonas R et al (2009) Accurate determination of membrane dynamics with Line-Scan FCS. Biophys J 96:1999–2008Google Scholar
  96. 96.
    Chiantia S, Ries J, Kahya N, Schwille P (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chemphyschem 7:2409–2418Google Scholar
  97. 97.
    Chiantia S, Kahya N, Schwille P (2007) Raft domain reorganization driven by short – and long-chain ceramide: a combined AFM and FCS study. Langmuir 23:7659–7665Google Scholar
  98. 98.
    Weiß K, Enderlein J (2012) Lipid diffusion within black lipid membranes measured with dual-focus fluorescence correlation spectroscopy. Chemphyschem 13:990–1000Google Scholar
  99. 99.
    Macháň R et al (2011) Formation of arenicin-1 microdomains in bilayers and their specific lipid interaction revealed by Z-scan FCS. Anal Bioanal Chem 399(10):3547–3554Google Scholar
  100. 100.
    Przybylo M et al (2006) Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22(22):9096–9099Google Scholar
  101. 101.
    Meissner O, Häberlein H (2003) Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42(6):1667–1672Google Scholar
  102. 102.
    Patel RC et al (2002) Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc Natl Acad Sci USA 99(5):3294–3299Google Scholar
  103. 103.
    Weidemann T et al (2011) Single cell analysis of ligand binding and complex formation of interleukin-4 receptor subunits. Biophys J 101(10):2360–2369Google Scholar
  104. 104.
    Briddon SJ et al (2004) Quantitative analysis of the formation and diffusion of A1-adenosinereceptor-antagonist complexes in single living cells. Proc Natl Acad Sci USA 101(13):4673–4678Google Scholar
  105. 105.
    Xu L, Pallikkuth S, Hou Z, Mignery GA, Robia SL, Han R (2011) Dysferlin forms a dimer mediated by the C2 domains and the transmembrane domain in vitro and in living cells. PLoS One 6(11)Google Scholar
  106. 106.
    Liu P et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93(2):684–698Google Scholar
  107. 107.
    García-Sáez AJ, Buschhorn SB, Keller H, Anderluh G, Simons K, Schwille P (2011) Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. J Biol Chem 286(43):37768–37777Google Scholar
  108. 108.
    Lasserre R et al (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4(9):538–547Google Scholar
  109. 109.
    Golebiewska U, Nyako M, Woturski W, Zaitseva I, McLaughlin S (2008) Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. Mol Biol Cell 19(4):1663–1669Google Scholar
  110. 110.
    Ganguly S, Chattopadhyay A (2010) Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1A receptor: a zFCS study. Biophys J 99(5):1397–1407Google Scholar
  111. 111.
    Larson DR, Gosse JA, Holowka DA, Baird BA, Webb WW (2005) Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J Cell Biol 171(3):527–536Google Scholar
  112. 112.
    Philip F, Sengupta P, Scarlata S (2007) Signaling through a G protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J Biol Chem 282(26):19203–19216Google Scholar
  113. 113.
    Mueller V et al (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101(7):1651–1660Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Monika Zelman-Femiak
    • 1
  • Yamunadevi Subburaj
    • 1
  • Ana J. García-Sáez
    • 1
    Email author
  1. 1.Max Planck Institute for Intelligent Systems and German Cancer Research Center, BioquantHeidelbergGermany

Personalised recommendations