Skip to main content

Probes for Nanoscopy: Photoswitchable Fluorophores

  • Chapter
  • First Online:
Far-Field Optical Nanoscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 14))

Abstract

In recent years, new concepts have emerged for imaging in a far-field fluorescence microscope with resolution under the diffraction limit. All these concepts bear in common the use of molecular states of the probe to switch its signal between a fluorescent and a dark state. So far, in these techniques different kinds of molecular switches have been applied, whose photochemical features become a crucial fact for the success. In this chapter, we will discuss how the two isomeric forms of a photochromic system can be used to design a fluorescent switch for that purpose. We will focus on the photochemical and photophysical relevant properties for these systems to fulfill the requirements of a suitable probe for the different strategies currently used in fluorescence nanoscopy. Examples containing diverse photochromes and their application in super-resolution fluorescence imaging will be described.

MLB and PFA are research staff from Carrera del Investigador Científico from CONICET (Consejo Nacional de Investigaciones CientÚficas y Técnicas, Argentina)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Absorption to higher excited states does not change the picture since, according to Kasha’s rule, relaxation to the lowest vibrational state of S1 is very fast, so this is the departing state for the considered reactions at any excitation wavelength.

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikr Anat 9:413–468

    Article  Google Scholar 

  2. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  Google Scholar 

  3. Hell SW, Kroug M (1995) Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B 60(5):495–497

    Article  Google Scholar 

  4. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32

    Article  CAS  Google Scholar 

  5. Crano JC, Guglielmetti RJ (eds) (1999) Organic photochromic and thermochromic compounds. Topics in applied chemistry, vol 1. Plenum, New York, p 376

    Google Scholar 

  6. Bouas-Laurent H, Düurr H (2001) Organic photochromism (IUPAC technical report). Pure Appl Chem 73(4):639–665

    Article  CAS  Google Scholar 

  7. Braslavsky S (2007) Glossary of terms used in photochemistry 3rd edition. Pure Appl Chem 79(3):293–465

    Article  CAS  Google Scholar 

  8. Feringa BL, van Delden RA, Koumura N, Geertsema EM (2000) Chiroptical molecular switches. Chem Rev 100(5):1789–1816

    Article  CAS  Google Scholar 

  9. Hell SW (2004) Strategy for far-field optical imaging and writing without diffraction limit. Phys Lett A 326(1–2):140–145

    Article  CAS  Google Scholar 

  10. Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94(14):143903

    Article  Google Scholar 

  11. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–16455

    Article  CAS  Google Scholar 

  12. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  Google Scholar 

  13. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  Google Scholar 

  14. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  Google Scholar 

  15. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Article  CAS  Google Scholar 

  16. Belfield KD, Liu Y, Negres RA, Fan M, Pan G, Hagan DJ, Hernandez FE (2002) Two-photon photochromism of an organic material for holographic recording. Chem Mater 14(9):3663–3667

    Article  CAS  Google Scholar 

  17. Folling J, Belov V, Kunetsky R, Medda R, Schonle A, Egner A, Eggeling C, Bossi M, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed 46(33):6266–6270

    Article  CAS  Google Scholar 

  18. Folling J, Belov V, Riedel D, Schonle A, Egner A, Eggeling C, Bossi M, Hell SW (2008) Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 9(2):321–326

    Article  Google Scholar 

  19. Zhu M-Q, Zhang G-F, Li C, Aldred MP, Chang E, Drezek RA, Li ADQ (2011) Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. J Am Chem Soc 133(2):365–372

    Article  CAS  Google Scholar 

  20. Miyasaka H, Murakami M, Itaya A, Guillaumont D, Nakamura S, Irie M (2001) Multiphoton gated photochromic reaction in a diarylethene derivative. J Am Chem Soc 123(4):753–754

    Article  CAS  Google Scholar 

  21. Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100(5):1875–1890

    Article  CAS  Google Scholar 

  22. Takahashi T, Taniguchi Y, Umetani K, Yokouchi H, Hashimoto M, Kano T (1985) Cis-trans photoisomerization of perinaphthothioindigo for use as a photo-imaging sensor using fluorescence under He-Ne laser excitation. Jpn J Appl Phys 24(2):173–176

    Article  CAS  Google Scholar 

  23. Tsivgoulis GM, Lehn J-M (1997) Multiplexing optical systems: multicolor-bifluorescent-biredox photochromic mixtures. Adv Mater 9(8):627–630

    Article  CAS  Google Scholar 

  24. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100(5):1685–1716

    Article  CAS  Google Scholar 

  25. Liang Y, Dvornikov AS, Rentzepis PM (2000) Synthesis and photochemistry of photochromic fluorescing indol-2-ylfulgimides. J Mater Chem 10(11):2477–2482

    Article  CAS  Google Scholar 

  26. Walz J, Ulrich K, Port H, Wolf HC, Wonner J, Effenberger F (1993) Fulgides as switches for intramolecular energy transfer. Chem Phys Lett 213(3–4):321–324

    Article  CAS  Google Scholar 

  27. Daub J, Beck M, Knorr A, Spreitzer H (1996) New molecular systems for functional dye-based molecular switching of luminescence. Pure Appl Chem 68(7):1399–1404

    Article  CAS  Google Scholar 

  28. Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA, Gust D (2001) Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad. J Am Chem Soc 123(29):7124–7133

    Article  CAS  Google Scholar 

  29. Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124(25):7481–7489

    Article  CAS  Google Scholar 

  30. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) A digital fluorescent molecular photoswitch. Nature 420(6917):759–760

    Article  CAS  Google Scholar 

  31. Bossi M, Belov V, Polyakova S, Hell SW (2006) Reversible red fluorescent molecular switches. Angew Chem Int Ed 45(44):7462–7465

    Article  CAS  Google Scholar 

  32. de Meijere A, Zhao L, Belov VN, Bossi M, Noltemeyer M, Hell SW (2007) 1,3-bicyclo[1.1.1]pentanediyl: the shortest rigid linear connector of phenylated photochromic units and a 1,5-dimethoxy-9,10-di(phenylethynyl)anthracene fluorophore. Chem Eur J 13(9):2503–2516

    Article  Google Scholar 

  33. Tsuchiya S (1998) Intramolecular electron transfer of diporphyrins comprised of electron-deficient porphyrin and electron-rich porphyrin with photocontrolled isomerization. J Am Chem Soc 121(1):48–53

    Article  Google Scholar 

  34. Myles AJ, Branda NR (2000) Porphyrinic phenoxynaphthacenequinones. Tetrahedron Lett 41(20):3785–3788

    Article  CAS  Google Scholar 

  35. Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M (2011) Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. J Am Chem Soc 133(13):4984–4990

    Article  CAS  Google Scholar 

  36. Yan SF, Belov VN, Bossi ML, Hell SW (2008) Switchable fluorescent and solvatochromic molecular probes based on 4-amino-N-methylphthalimide and a photochromic diarylethene. Eur J Org Chem 2008(15):2531–2538

    Article  Google Scholar 

  37. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6(1):103–110

    Article  CAS  Google Scholar 

  38. Jin M, Lu R, Bao CY, Xu TH, Zhao YY (2004) Fluorescence modulation in azobenzene-substituted triphenyl pyrazoline derivative. Opt Mater 26(1):85–88

    Article  CAS  Google Scholar 

  39. Harbron EJ, Vicente DA, Hoyt MT (2004) Fluorescence modulation via isomer-dependent energy transfer in an azobenzene-functionalized poly(phenylenevinylene) derivative. J Phys Chem B 108(49):18789–18792

    Article  CAS  Google Scholar 

  40. Song L, Jares-Erijman EA, Jovin TM (2002) A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J Photochem Photobiol A 150(1–3):177–185

    Article  CAS  Google Scholar 

  41. Seefeldt B, Kasper R, Beining M, Mattay J, Arden-Jacob J, Kemnitzer N, Drexhage KH, Heilemann M, Sauer M (2010) Spiropyrans as molecular optical switches. Photochem Photobiol Sci 9(2):213–220

    Article  CAS  Google Scholar 

  42. Bossi M, Folling J, Belov VN, Boyarskiy VP, Medda R, Egner A, Eggeling C, Schonle A, Hell SW (2008) Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8(8):2463–2468

    Article  CAS  Google Scholar 

  43. Belov VN, Bossi ML, Folling J, Boyarskiy VP, Hell SW (2009) Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chem Eur J 15(41):10762–10776

    Article  CAS  Google Scholar 

  44. Deniz E, Sortino S, Raymo FM (2010) Fluorescence switching with a photochromic auxochrome. J Phys Chem Lett 1(24):3506–3509

    Article  CAS  Google Scholar 

  45. Bossi M, Folling J, Dyba M, Westphal V, Hell SW (2006) Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New J Phys 8:275

    Article  Google Scholar 

  46. Fukaminato T, Sasaki T, Kawai T, Tamai N, Irie M (2004) Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J Am Chem Soc 126(45):14843–14849

    Article  CAS  Google Scholar 

  47. Folling J, Polyakova S, Belov V, van Blaaderen A, Bossi ML, Hell SW (2008) Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small 4(1):134–142

    Article  Google Scholar 

  48. Takeshita M, Irie M (1997) Enhancement of the photocyclization quantum yield of 2,2[prime or minute]-dimethyl-3,3[prime or minute]-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]- thiophene-6-sulfonate) by inclusion in a cyclodextrin cavity. Chem Commun (23):2265–2266

    Google Scholar 

  49. Soh N, Yoshida K, Nakajima H, Nakano K, Imato T, Fukaminato T, Irie M (2007) A fluorescent photochromic compound for labeling biomolecules. Chem Commun (48):5206–5208

    Google Scholar 

  50. Hirose T, Irie M, Matsuda K (2008) Temperature-light dual control of clouding behavior of an oligo(ethylene glycol)-diarylethene hybrid system. Adv Mater 20(11):2137–2141

    Article  CAS  Google Scholar 

  51. Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71(20):7499–7508

    Article  CAS  Google Scholar 

  52. Piao X, Zou Y, Wu J, Li C, Yi T (2009) Multiresponsive switchable diarylethene and its application in bioimaging. Org Lett 11(17):3818–3821

    Article  CAS  Google Scholar 

  53. Zou Y, Yi T, Xiao SZ, Li FY, Li CY, Gao X, Wu JC, Yu MX, Huang CH (2008) Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. J Am Chem Soc 130(47):15750–15751

    Article  CAS  Google Scholar 

  54. Zhou X, Duan Y, Yan S, Liu Z, Zhang C, Yao L, Cui G (2011) Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere. Chem Commun 47(24):6876–6878

    Article  CAS  Google Scholar 

  55. Polyakova S, Belov VN, Bossi ML, Hell SW (2011) Synthesis of photochromic compounds for aqueous solutions and focusable light. Eur J Org Chem 2011(18):3301–3312

    Article  CAS  Google Scholar 

  56. Knauer KH, Gleiter R (1977) Photochromism of rhodarnine derivatives. Angew Chem Int Ed 16(2):113

    Article  Google Scholar 

  57. Willwohl H, Wolfrum J, Gleiter R (1989) Kinetics and mechanism of the photochromism of N-phenyl-rhodaminelactame. Laser Chem 10(2):63–72

    Article  CAS  Google Scholar 

  58. Kummer S, Dickson RM, Moerner WE (1998) Probing single molecules in polyacrylamide gels. Proc Soc Photo-Opt Instrum Eng 3272:165–173

    Google Scholar 

  59. Zondervan R, Kulzer F, Orlinskii SB, Orrit M (2003) Photoblinking of rhodamine 6G in poly(vinyl alcohol): radical dark state formed through the triplet. J Phys Chem A 107(35):6770–6776

    Article  CAS  Google Scholar 

  60. Foiling J, Belov V, Riedel D, Schonle A, Egner A, Eggeling C, Bossi M, Hell SW (2008) Fluorescence nanoscopy with optical sectioning by two- photon induced molecular switching using continuous- wave lasers. ChemPhysChem 9(2):321–326

    Article  Google Scholar 

  61. Testa I, Schonle A, Middendorff CV, Geisler C, Medda R, Wurm CA, Stiel AC, Jakobs S, Bossi M, Eggeling C, Hell SW, Egner A (2008) Nanoscale separation of molecular species based on their rotational mobility. Opt Express 16(25):21093–21104

    Article  CAS  Google Scholar 

  62. Guglielmetti R (1990) 4n + 2 Systems: spiropyrans. In: Dürr H, Bouas-Laurent H (eds) Photochromism: molecules and systems, 1st edn. Elsevier, Amsterdam, pp 314–466

    Google Scholar 

  63. Tomasulo M, Deniz E, Alvarado RJ, Raymo FM (2008) Photoswitchable fluorescent assemblies based on hydrophilic BODIPY-spiropyran conjugates. J Phys Chem C 112(21):8038–8045

    Article  CAS  Google Scholar 

  64. Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2003) Reversible modulation of quantum dot photoluminescence using a protein- bound photochromic fluorescence resonance energy transfer acceptor. J Am Chem Soc 126(1):30–31

    Article  Google Scholar 

  65. Hu DH, Tian ZY, Wu WW, Wan W, Li ADQ (2008) Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. J Am Chem Soc 130(46):15279–15281

    Article  CAS  Google Scholar 

  66. Zhu M-Q, Zhu L, Han JJ, Wu W, Hurst JK, Li ADQ (2006) Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J Am Chem Soc 128(13):4303–4309

    Article  CAS  Google Scholar 

  67. Tian Z, Wu W, Wan W, Li ADQ (2009) Single-chromophore-based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging. J Am Chem Soc 131(12):4245–4252

    Article  CAS  Google Scholar 

  68. Tomasulo M, Sortino S, Raymo FM (2005) A fast and stable photochromic switch based on the opening and closing of an oxazine ring. Org Lett 7(6):1109–1112

    Article  CAS  Google Scholar 

  69. Tomasulo M, Sortino S, White AJP, Raymo FM (2005) Fast and stable photochromic oxazines. J Org Chem 70(20):8180–8189

    Article  CAS  Google Scholar 

  70. Deniz E, Tomasulo M, Sortino S, Raymo FM (2009) Substituent effects on the photochromism of bichromophoric oxazines. J Phys Chem C 113(19):8491–8497

    Article  CAS  Google Scholar 

  71. Deniz E, Tomasulo M, Cusido J, Yildiz I, Petriella M, Sortino S, Bossi ML, Sortino S, Raymo FM (2012) Photoactivatable Fluorophores for Super-Resolution Imaging Based on Oxazine Auxochromes. J Phys Chem C 116(10), 6058–6068

    Google Scholar 

  72. Andresen M, Wahl MC, Stiel AC, Grater F, Schafer LV, Trowitzsch S, Weber G, Eggeling C, Grubmuller H, Hell SW, Jakobs S (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102(37):13070–13074

    Article  CAS  Google Scholar 

  73. Brakemann T, Weber G, Andresen M, Groenhof G, Stiel AC, Trowitzsch S, Eggeling C, Grubmüller H, Hell SW, Wahl MC, Jakobs S (2010) Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J Biol Chem 285(19):14603–14609

    Article  CAS  Google Scholar 

  74. Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to “kindling fluorescent protein” riddle. J Biol Chem 278(9):7215–7219

    Article  CAS  Google Scholar 

  75. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  CAS  Google Scholar 

  76. Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98(21):218103

    Article  Google Scholar 

  77. Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Article  Google Scholar 

  78. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176

    Article  CAS  Google Scholar 

  79. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47(29):5465–5469

    Article  CAS  Google Scholar 

  80. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908

    Article  CAS  Google Scholar 

  81. Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci USA 106(20):8107–8112

    Article  CAS  Google Scholar 

  82. Dertinger T, Heilemann M, Vogel R, Sauer M, Weiss S (2010) Superresolution optical fluctuation imaging with organic dyes. Angew Chem Int Ed 49(49):9441–9443

    Article  CAS  Google Scholar 

  83. Gensch T, Böhmer M, Aramendía PF (2005) Single molecule blinking and photobleaching separated by wide-field fluorescence microscopy. J Phys Chem A 109(30):6652–6658

    Article  CAS  Google Scholar 

  84. Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photonics Rev 3(1–2):180–202

    Article  CAS  Google Scholar 

  85. Vogelsang J, Steinhauer C, Forthmann C, Stein IH, Person-Skegro B, Cordes T, Tinnefeld P (2010) Make them blink: probes for super-resolution microscopy. ChemPhysChem 11(12):2475–2490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano L. Bossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aramendía, P.F., Bossi, M.L. (2012). Probes for Nanoscopy: Photoswitchable Fluorophores. In: Tinnefeld, P., Eggeling, C., Hell, S. (eds) Far-Field Optical Nanoscopy. Springer Series on Fluorescence, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_39

Download citation

Publish with us

Policies and ethics