Vibrational Spectroscopy of Fluorescent Proteins: A Tool to Investigate the Structure of the Chromophore and Its Environment

  • Valentina Tozzini
  • Stefano LuinEmail author
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 11)


The design of fluorescent protein (FP) mutants with tailored properties benefits from the comprehension of chromophore structure, interactions, energy landscapes, and dynamics. Vibrational spectroscopy can often provide detailed information on these characteristics for proteins in their natural aqueous environment, during their (photo)dynamics and without the need of crystallization. Here we will review the experimental and theoretical techniques that have been used to analyze the relations between vibrational spectra and different structural, photophysical, and chemical properties of FPs, in particular the ones able to selectively address the chromophore and its close environment, like (pre)resonance Raman, difference-IR absorption measurements, and their computational simulations. Starting from the preliminary results aimed at identifying vibrational modes in the neutral and anionic GFP chromophore, we will discuss selected experiments that unraveled, often thanks to comparison with theoretical studies, the structure of the chromophore in some FP mutants, the impact of cistrans isomerization and different protonation states in reversibly photoswitchable proteins, and the structural changes and proton-transfer pathway in the photoexcited state.


Density Functional Theory Fluorescent protein chromophores GFP IR absorption Raman Time-resolved spectroscopy Vibrational spectroscopy 


  1. 1.
    Bell AF et al (2001) Structure of green fluorescent protein chromophores probed by Raman spectroscopy. Biochemistry 40(29):8619–8619Google Scholar
  2. 2.
    van Thor JJ et al (1998) Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37(48):16915–16921CrossRefGoogle Scholar
  3. 3.
    van Thor JJ et al (2005) Structural events in the photocycle of green fluorescent protein. J Phys Chem B 109(33):16099–16108CrossRefGoogle Scholar
  4. 4.
    Luin S et al (2009) Raman study of chromophore states in photochromic fluorescent proteins. J Am Chem Soc 131(1):96–103CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Zscherp C, Heberle J (1997) Infrared difference spectra of the intermediates L, M, N, and O of the bacteriorhodopsin photoreaction obtained by time-resolved attenuated total reflection spectroscopy. J Phys Chem B 101(49):10542–10547CrossRefGoogle Scholar
  7. 7.
    Bell AF et al (2003) Light-driven decarboxylation of wild-type green fluorescent protein. J Am Chem Soc 125(23):6919–26CrossRefGoogle Scholar
  8. 8.
    Habuchi S et al (2005) Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. J Am Chem Soc 127(25):8977–8984CrossRefGoogle Scholar
  9. 9.
    Schellenberg P et al (2001) Resonance Raman scattering by the green fluorescent protein and an analogue of its chromophore. J Phys Chem B 105(22):5316–5322CrossRefGoogle Scholar
  10. 10.
    Talley CE et al (2005) Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett 5(8):1569–74CrossRefGoogle Scholar
  11. 11.
    Kneipp J et al (2009) Optical probing and imaging of live cells using SERS labels. J Raman Spectrosc 40(1):1–5CrossRefGoogle Scholar
  12. 12.
    Kneipp J et al (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6(10):2225–2231CrossRefGoogle Scholar
  13. 13.
    Tozzini V et al (2003) The low frequency vibrational modes of green fluorescent proteins. ChemPhys 287:33–42Google Scholar
  14. 14.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  15. 15.
    Habuchi S et al (2003) Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein. J Am Chem Soc 125(28):8446–8447CrossRefGoogle Scholar
  16. 16.
    Freudiger CW et al (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861CrossRefGoogle Scholar
  17. 17.
    Nienhaus GU (2010) The “Wiggling and Jiggling of Atoms” leading to excited-state proton transfer in green fluorescent protein. Chemphyschem 11(5):971–974Google Scholar
  18. 18.
    Kruglik SG et al (2002) Resonance CARS study of the structure of “Green” and “Red” chromophores within the red fluorescent protein DsRed. J Am Chem Soc 124(37):10992–10993CrossRefGoogle Scholar
  19. 19.
    Cinelli RAG et al (2001) Coherent dynamics of photoexcited green fluorescent proteins. Phys Rev Lett 86(15):3439–3442CrossRefGoogle Scholar
  20. 20.
    Usman A et al (2005) Excited-state structure determination of the green fluorescent protein chromophore. J Am Chem Soc 127(32):11214–5CrossRefGoogle Scholar
  21. 21.
    Thar J, Reckien W, Kirchner B (2007) Car–Parrinello molecular dynamics simulations and biological systems. In: Reiher M (ed) Atomistic approaches in modern biology. Springer, Berlin, pp 133–171CrossRefGoogle Scholar
  22. 22.
    Ceperley D (1978) Ground state of the fermion one-component plasma: a Monte Carlo study in two and three dimensions. Phys Rev B 18(7):3126CrossRefGoogle Scholar
  23. 23.
    Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):566CrossRefGoogle Scholar
  24. 24.
    Tanatar B, Ceperley DM (1989) Ground state of the two-dimensional electron gas. Phys Rev B 39(8):5005CrossRefGoogle Scholar
  25. 25.
    Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phy Chem A 111(42):10439–10452CrossRefGoogle Scholar
  26. 26.
    Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  27. 27.
    Filippone F, Parrinello M (2001) Vibrational analysis from linear response theory. Chem Phys Lett 345(1–2):179–182CrossRefGoogle Scholar
  28. 28.
    Herrmann C (2007) First-principles approach to vibrational spectroscopy of biomolecules. In: Reiher M (ed) Atomistic approaches in modern biology. Springer, Berlin, pp 85–132CrossRefGoogle Scholar
  29. 29.
    Putrino A, Sebastiani D, Parrinello M (2000) Generalized variational density functional perturbation theory. J Chem Phys 113(17):7102–7109CrossRefGoogle Scholar
  30. 30.
    Jensen L et al (2005) Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. J Chem Phys 123(17):174110–11CrossRefGoogle Scholar
  31. 31.
    Tozzini V, Giannozzi P (2005) Vibrational properties of DsRed model chromophores. Chemphyschem 6:1786–8CrossRefGoogle Scholar
  32. 32.
    Marx D, Hutter J (2000) In: Modern methods and algorithms of quantum chemistry, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 1, pp. 301-449Google Scholar
  33. 33.
    Kohanoff J (1994) Phonon spectra from short non-thermally equilibrated molecular dynamics simulations. Comput Mater Sci 2(2):221–232CrossRefGoogle Scholar
  34. 34.
    Tangney P, Scandolo S (2002) How well do Car-Parrinello simulations reproduce the Born-Oppenheimer surface? Theory and examples. J Chem Phys 116(1):14–24CrossRefGoogle Scholar
  35. 35.
    Esposito AP et al (2001) Vibrational spectroscopy and mode assignments for an analog of the green fluorescent protein cromophore. J Mol Struct 569:25–41CrossRefGoogle Scholar
  36. 36.
    Bell AF et al (2000) Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy. Biochemistry 39(15):4423–31CrossRefGoogle Scholar
  37. 37.
    He X, Bell AF, Tonge PJ (2002) Isotopic labeling and normal-mode analysis of a model green fluorescent protein chromophore. J Phys Chem B 106(23):6056–6066CrossRefGoogle Scholar
  38. 38.
    Laino T, Nifosì R, Tozzini V (2004) Relationship between structure and optical properties in green fluorescent proteins: a quantum mechanical study of the chromophore environment. ChemPhys 298:17–28Google Scholar
  39. 39.
    Nifosì R, Amat P, Tozzini V (2007) Variation of spectral, structural and vibrational properties within the intrinsically fluorescent proteins family: a density functional study. J Comput Chem 28(14):2366–2377CrossRefGoogle Scholar
  40. 40.
    Andruniów T (2007) Vibrational analysis of a solvated green fluorescent protein chromophore. J Mol Model 13(6):775–783CrossRefGoogle Scholar
  41. 41.
    He X, Bell AF, Tonge PJ (2002) Synthesis and spectroscopic studies of model red fluorescent protein chromophores. Org Lett 4(9):1523–1526CrossRefGoogle Scholar
  42. 42.
    Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100(41):16502–16513CrossRefGoogle Scholar
  43. 43.
    Henderson JN et al (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104(16):6672–6677CrossRefGoogle Scholar
  44. 44.
    Andresen M et al (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102(37):13070–13074CrossRefGoogle Scholar
  45. 45.
    Andresen M et al (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA 104(32):13005–13009CrossRefGoogle Scholar
  46. 46.
    Nifosì R et al (2003) Photoreversible dark state in a tristable green fluorescent protein variant. J Phys Chem B 107(7):1679–1684CrossRefGoogle Scholar
  47. 47.
    Loos DC et al (2006) Photoconversion in the red fluorescent protein from the Sea Anemone Entacmaea quadricolor: is cis-trans isomerization involved? J Am Chem Soc 128(19):6270–6271CrossRefGoogle Scholar
  48. 48.
    van Thor JJ et al (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9(1):37–41CrossRefGoogle Scholar
  49. 49.
    Voliani V et al (2008) Cis-trans photoisomerization of fluorescent-protein chromophores. J Phys Chem B 112:10714–10722CrossRefGoogle Scholar
  50. 50.
    Bizzarri R et al (2010) Single amino acid replacement makes aequorea victoria fluorescent proteins reversibly photoswitchable. J Am Chem Soc 132(1):85–95CrossRefGoogle Scholar
  51. 51.
    Nifosì R, Tozzini V (2006) Cis-trans photoisomerization of the chromophore in the green fluorescent protein variant E2GFP: a molecular dynamics study. ChemPhys 323(2–3):358–368Google Scholar
  52. 52.
    Stoner-Ma D et al (2005) Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy. J Am Chem Soc 127(9):2864–2865CrossRefGoogle Scholar
  53. 53.
    Stoner-Ma D et al (2006) Proton relay reaction in green fluorescent protein (GFP): polarization-resolved ultrafast vibrational spectroscopy of isotopically edited GFP. J Phys Chem B 110(43):22009–22018CrossRefGoogle Scholar
  54. 54.
    Stoner-Ma D et al (2008) Ultrafast electronic and vibrational dynamics of stabilized A state mutants of the green fluorescent protein (GFP): snipping the proton wire. ChemPhys 350(1–3):193–200Google Scholar
  55. 55.
    Stoner-Ma D et al (2008) An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP. J Am Chem Soc 130(4):1227–1235CrossRefGoogle Scholar
  56. 56.
    Fang C et al (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462(7270):200–204CrossRefGoogle Scholar
  57. 57.
    Violot S et al (2009) Reverse pH-dependence of chromophore protonation explains the large stokes shift of the red fluorescent protein mKeima. J Am Chem Soc 131(30):10356–10357CrossRefGoogle Scholar
  58. 58.
    Schleifenbaum F, Peter S, Meixner AJ (2009) Detecting the same individual protein and its photoproducts via fluorescence and surface-enhanced Raman spectroscopic imaging. J Phys Chem A 114(1):143–150CrossRefGoogle Scholar
  59. 59.
    Hochstrasser RM (2007) Two-dimensional spectroscopy at infrared and optical frequencies. Proc Natl Acad Sci USA 104(36):14190–14196CrossRefGoogle Scholar
  60. 60.
    Kim YS, Hochstrasser RM (2009) Applications of 2D IR spectroscopy to peptides proteins, and hydrogen-bond dynamics. J Phys Chem B 113(24):8231–8251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNRPisaItaly

Personalised recommendations