Skip to main content

Structure–Function Relationships in Fluorescent Marker Proteins of the Green Fluorescent Protein Family

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 11))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nienhaus GU (2008) The green fluorescent protein: a key tool to study chemical processes in living cells. Angew Chem Int Ed Engl 47:8992–8994

    Article  CAS  Google Scholar 

  2. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  4. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  Google Scholar 

  5. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  6. Matz MV, Fradkov AF, Labas YA et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  7. Wiedenmann J, Elke C, Spindler KD et al (2000) Cracks in the beta -can: fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria). Proc Natl Acad Sci USA 97:14091–14096

    Article  CAS  Google Scholar 

  8. Wiedenmann J (1997) Die Anwendung eines fluoreszierenden Proteins und weiterer farbiger Proteine und der zugehörigen Gene aus der Artengruppe Anemonia sp. (sulcata) Pennant, (Cnidaria, Anthozoa, Actinaria) in Gentechnologie und Molekularbiologie. Offenlegungsschrift DE 197 18 640 A1, Deutsches Patent- und Markenamt, pp 1–18. In, Offenlegungsschrift DE 197 18 640 A1: Deutsches Patent- und Markenamt; 1997:1–18

    Google Scholar 

  9. Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3:361–374

    Article  CAS  Google Scholar 

  10. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  Google Scholar 

  11. Habuchi S, Ando R, Dedecker P et al (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci U S A 102:9511–9516

    Article  CAS  Google Scholar 

  12. Adam V, Lelimousin M, Boehme S et al (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci U S A 105:18343–18348

    Article  CAS  Google Scholar 

  13. Ormö M, Cubitt AB, Kallio K et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  Google Scholar 

  14. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  CAS  Google Scholar 

  15. Kummer AD, Kompa C, Niwa H et al (2002) Viscosity-dependent fluorescence decay of the GFP chromophore in solution due to fast internal conversion. J Phys Chem B 106:7554–7559

    Article  CAS  Google Scholar 

  16. Voityuk AA, Michel-Beyerle ME, Rösch N (1998) Quantum chemical modeling of structure and absorption spectra of the chromophore in green fluorescent proteins. Chem Phys Lett 296:269–276

    Article  CAS  Google Scholar 

  17. Pouwels LJ, Zhang L, Chan NH et al (2008) Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants. Biochemistry 47:10111–10122

    Article  CAS  Google Scholar 

  18. Katranidis A, Atta D, Schlesinger R et al (2009) Fast biosynthesis of GFP molecules: a single-molecule fluorescence study. Angew Chem Int ed 48:1758–1761

    Article  CAS  Google Scholar 

  19. Youvan DC, Michel-Beyerle ME (1996) Structure and fluorescence mechanism of GFP. Nat Biotechnol 14:1219–1220

    Article  CAS  Google Scholar 

  20. Nienhaus GU (2010) The “wiggling and jiggling of atoms” leading to excited-state proton transfer in green fluorescent protein. ChemPhysChem 11:971–974

    CAS  Google Scholar 

  21. Lossau H, Kummer A, Heinecke R et al (1996) Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys 213:1–16

    Article  CAS  Google Scholar 

  22. Gross LA, Baird GS, Hoffman RC et al (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11990–11995

    Article  CAS  Google Scholar 

  23. Wiedenmann J, Schenk A, Röcker C et al (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci USA 99:11646–11651

    Article  CAS  Google Scholar 

  24. Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. ChemPhysChem 10:1369–1379

    Article  CAS  Google Scholar 

  25. Abbyad P, Childs W, Shi X et al (2007) Dynamic Stokes shift in green fluorescent protein variants. Proc Natl Acad Sci U S A 104:20189–20194

    Article  CAS  Google Scholar 

  26. Shu X, Shaner NC, Yarbrough CA et al (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–9646

    Article  CAS  Google Scholar 

  27. Remington SJ, Wachter RM, Yarbrough DK et al (2005) zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Biochemistry 44:202–212

    Article  CAS  Google Scholar 

  28. Lukyanov KA, Fradkov AF, Gurskaya NG et al (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–25882

    Article  CAS  Google Scholar 

  29. Quillin ML, Anstrom DM, Shu X et al (2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. Biochemistry 44:5774–5787

    Article  CAS  Google Scholar 

  30. Wilmann PG, Petersen J, Devenish RJ et al (2005) Variations on the GFP chromophore: a polypeptide fragmentation within the chromophore revealed in the 2.1-A crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata. J Biol Chem 280:2401–2404

    Article  CAS  Google Scholar 

  31. Andresen M, Wahl MC, Stiel AC et al (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci U S A 102:13070–13074

    Article  CAS  Google Scholar 

  32. Phillips GN Jr (1997) Structure and dynamics of green fluorescent protein. Curr Opin Struct Biol 7:821–827

    Article  CAS  Google Scholar 

  33. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11984–11989

    Article  CAS  Google Scholar 

  34. Vrzheshch PV, Akovbian NA, Varfolomeyev SD et al (2000) Denaturation and partial renaturation of a tightly tetramerized DsRed protein under mildly acidic conditions. FEBS Lett 487:203–208

    Article  CAS  Google Scholar 

  35. Alieva NO, Konzen KA, Field SF et al (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3:e2680

    Article  Google Scholar 

  36. Gurskaya NG, Fradkov AF, Terskikh A et al (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 507:16–20

    Article  CAS  Google Scholar 

  37. Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289–296

    Article  CAS  Google Scholar 

  38. Yarbrough D, Wachter RM, Kallio K et al (2001) Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proc Natl Acad Sci U S A 98:462–467

    Article  CAS  Google Scholar 

  39. Yang TT, Sinai P, Green G et al (1998) Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J Biol Chem 273:8212–8216

    Article  CAS  Google Scholar 

  40. Cubitt AB, Heim R, Adams SR et al (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    Article  CAS  Google Scholar 

  41. Pedelacq JD, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  CAS  Google Scholar 

  42. Kredel S, Nienhaus K, Wolff M et al (2008) Optimized and far-red emitting variants of fluorescent protein eqFP611. Chem Biol 15:224–233

    Article  CAS  Google Scholar 

  43. Fuchs J, Böhme S, Oswald F et al (2010) Imaging protein movements in live cells with super-resolution using mIrisFP. Nat Methods 7:627–630

    Article  CAS  Google Scholar 

  44. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berlin, Germany) 81:678–699

    CAS  Google Scholar 

  45. Link CD, Fonte V, Hiester B et al (2006) Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. J Biol Chem 281:1808–1816

    Article  CAS  Google Scholar 

  46. Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB life 61:1029–1042

    Article  CAS  Google Scholar 

  47. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721

    Article  CAS  Google Scholar 

  48. Bulina ME, Chudakov DM, Britanova OV et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99

    Article  CAS  Google Scholar 

  49. Tour O, Meijer RM, Zacharias DA et al (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 21:1505–1508

    Article  CAS  Google Scholar 

  50. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  CAS  Google Scholar 

  51. Zacharias DA, Violin JD, Newton AC et al (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  Google Scholar 

  52. Wiedenmann J, Ivanchenko S, Oswald F et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101:15905–15910

    Article  CAS  Google Scholar 

  53. Wiedenmann J, Vallone B, Renzi F et al (2005) The red fluorescent protein eqFP611 and its genetically engineered dimeric variants. J Biomed Optics 10:014003 (014007 pages)

    Article  Google Scholar 

  54. Campbell RE, Tour O, Palmer AE et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    Article  CAS  Google Scholar 

  55. Kredel S, Oswald F, Nienhaus K et al (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4:e4391

    Article  Google Scholar 

  56. Fradkov AF, Verkhusha VV, Staroverov DB et al (2002) Far-red fluorescent tag for protein labelling. Biochem J 368:17–21

    Article  CAS  Google Scholar 

  57. Nienhaus GU, Nienhaus K, Hölzle A et al (2006) Photoconvertible fluorescent protein EosFP-biophysical properties and cell biology applications. Photochem Photobiol 82:351–358

    Article  CAS  Google Scholar 

  58. Bulina ME, Verkhusha VV, Staroverov DB et al (2003) Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with Anthozoa fluorescent proteins. Biochem J 371:109–114

    Article  CAS  Google Scholar 

  59. Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  Google Scholar 

  60. Ai HW, Henderson JN, Remington SJ et al (2006) Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J 400:531–540

    Article  CAS  Google Scholar 

  61. van Thor JJ, Gensch T, Hellingwerf KJ et al (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9:37–41

    Article  Google Scholar 

  62. Ai HW, Shaner NC, Cheng Z et al (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46:5904–5910

    Article  CAS  Google Scholar 

  63. Adam V, Nienhaus K, Bourgeois D et al (2009) Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48:4905–4915

    Article  CAS  Google Scholar 

  64. Shcherbo D, Merzlyak EM, Chepurnykh TV et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746

    Article  CAS  Google Scholar 

  65. Piatkevich KD, Hulit J, Subach OM et al (2010) Monomeric red fluorescent proteins with a large Stokes shift. Proc Natl Acad Sci U S A 107:5369–5374

    Article  CAS  Google Scholar 

  66. Wachter RM, Elsliger MA, Kallio K et al (1998) Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6:1267–1277

    Article  CAS  Google Scholar 

  67. Shagin DA, Barsova EV, Yanushevich YG et al (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850

    Article  CAS  Google Scholar 

  68. Petersen J, Wilmann PG, Beddoe T et al (2003) The 2.0-Å crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 278:44626–44631

    Article  CAS  Google Scholar 

  69. Loos DC, Habuchi S, Flors C et al (2006) Photoconversion in the red fluorescent protein from the sea anemone Entacmaea quadricolor: is cis-trans isomerization involved? J Am Chem Soc 128:6270–6271

    Article  CAS  Google Scholar 

  70. Nienhaus K, Nar H, Heilker R et al (2008) Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611. J Am Chem Soc 130:12578–12579

    Article  CAS  Google Scholar 

  71. Terskikh A, Fradkov A, Ermakova G et al (2000) “Fluorescent timer”: protein that changes color with time. Science 290:1585–1588

    Article  CAS  Google Scholar 

  72. Subach FV, Subach OM, Gundorov IS et al (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5:118–126

    Article  CAS  Google Scholar 

  73. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504

    Article  CAS  Google Scholar 

  74. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  CAS  Google Scholar 

  75. Kajihara D, Hohsaka T, Sisido M (2005) Synthesis and sequence optimization of GFP mutants containing aromatic non-natural amino acids at the Tyr66 position. Protein Eng Des Sel 18:273–278

    Article  CAS  Google Scholar 

  76. Goulding A, Shrestha S, Dria K et al (2008) Red fluorescent protein variants with incorporated non-natural amino acid analogues. Protein Eng Des Sel 21:101–106

    Article  CAS  Google Scholar 

  77. Subach OM, Gundorov IS, Yoshimura M et al (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15:1116–1124

    Article  CAS  Google Scholar 

  78. Subach OM, Malashkevich VN, Zencheck WD et al (2010) Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem Biol 17:333–341

    Article  CAS  Google Scholar 

  79. Henderson JN, Gepshtein R, Heenan JR et al (2009) Structure and mechanism of the photoactivatable green fluorescent protein. J Am Chem Soc 131:4176–4177

    Article  CAS  Google Scholar 

  80. Ando R, Hama H, Yamamoto-Hino M et al (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    Article  CAS  Google Scholar 

  81. Nienhaus K, Nienhaus GU, Wiedenmann J et al (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci U S A 102:9156–9159

    Article  CAS  Google Scholar 

  82. Gurskaya NG, Verkhusha VV, Shcheglov AS et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    Article  CAS  Google Scholar 

  83. Labas YA, Gurskaya NG, Yanushevich YG et al (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci U S A 99:4256–4261

    Article  CAS  Google Scholar 

  84. Oswald F, Schmitt F, Leutenegger A et al (2007) Contributions of host and symbiont pigments to the coloration of reef corals. FEBS J 274:1102–1109

    Article  CAS  Google Scholar 

  85. Mizuno H, Mal TK, Tong KI et al (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    Article  CAS  Google Scholar 

  86. Hayashi I, Mizuno H, Tong KI et al (2007) Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede. J Mol Biol 372:918–926

    Article  CAS  Google Scholar 

  87. Lelimousin M, Adam V, Nienhaus GU et al (2009) Photoconversion of the fluorescent protein EosFP: a hybrid potential simulation study reveals intersystem crossings. J Am Chem Soc 131:16814–16823

    Article  CAS  Google Scholar 

  88. Lukyanov KA, Chudakov DM, Lukyanov S et al (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–891

    Article  CAS  Google Scholar 

  89. Chudakov DM, Belousov VV, Zaraisky AG et al (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194

    Article  CAS  Google Scholar 

  90. Wilmann PG, Turcic K, Battad JM et al (2006) The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. J Mol Biol 364:213–224

    Article  CAS  Google Scholar 

  91. Andresen M, Stiel AC, Trowitzsch S et al (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci U S A 104:13005–13009

    Article  CAS  Google Scholar 

  92. Henderson JN, Ai HW, Campbell RE et al (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci U S A 104:6672–6677

    Article  CAS  Google Scholar 

  93. Schäfer LV, Groenhof G, Klingen AR et al (2007) Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra. Angew Chem Int Ed 46:530–536

    Article  Google Scholar 

Download references

Acknowledgments

G.U.N. was supported by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the Center for Functional Nanostructures (CFN), by DFG grant Ni 291/9 and by the Baden-Württemberg Stiftung. J.W. acknowledges funding by DFG grant Wi 1990/2, the Network Fluorescence Applications in Biotechnology and Life Sciences, FABLS, Australia, the Landesstiftung Baden-Württemberg (Elite Postdoc Program); the Natural Environment Research Council, UK (NE/G009643/1) and the University of Southampton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ulrich Nienhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nienhaus, G.U., Nienhaus, K., Wiedenmann, J. (2011). Structure–Function Relationships in Fluorescent Marker Proteins of the Green Fluorescent Protein Family. In: Jung, G. (eds) Fluorescent Proteins I. Springer Series on Fluorescence, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_15

Download citation

Publish with us

Policies and ethics