Skip to main content

Stable Luminescent Chelates and Macrocyclic Compounds

  • Chapter
  • First Online:

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 7))

Abstract

This review is focused on the lanthanide probes usable for time-resolved luminescence resonance energy transfer experiment and in the development of bioassays. The basic principle of heterogeneous time-resolved fluorescence (TRF) assays and homogeneous TRF assays are summarized. The criteria that should fulfill a lanthanide luminescent probe to be useful in the design of bioassays in diagnostic or drug discovery (high throughput screening) are defined as brightness, absorption wavelength, luminescence decay, instrumentation crosstalk, stability, lipophilicity/hydrophilicity, photobleaching, quenching phenomenon, conjugation chemistry, and synthesis practicability. The photophysical properties and the fulfillment of the above criteria are commented for the most representative structures insisting on the available stability data. Two main groups of molecules are described: (1) the luminescent stable chelates and (2) the macrocyclic-based ligands. The stable chelates are based on EDTA, DTPA, podant-like scaffold, and peptide scaffolds. The macrocyclic compounds described are macrocycles, macrocycles with pendant groups, and macropolycyclic cage ligands (cryptands). Applications of lanthanides complexes to cell based assays as well as time-resolved microscopy and imaging are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Φ :

Quantum yield

BP:

Bipyridine

BSA:

Bovine serum albumin

DMEM:

Dulbecco’s modified Eagle’s medium

DO3A:

1,4,7,10-Tetraazacyclododecane-N,N′,N″-triacetic acid

DOTA:

Tetraazacyclododecane tetraacetic acid

EDTA:

Ethylene diamine tetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

FCS:

Fetal calf serum

FITC:

Fluorescein isothiocyanate

FRET:

Förster resonance energy transfer

GFP:

Green fluorescent protein

HSA:

Human serum albumin

HTRF:

Homogeneous time-resolved fluorescence

HTS:

High throughput screening

K OW :

Octanol/water partition coefficient

LANCE:

Lanthanide chelate excitation

LBT:

Lanthanide-binding tag

LRET:

Luminescence resonance energy transfer

MRI:

Magnetic resonance imaging

nH2O:

Number of water molecules

NHS:

N-hydroxysuccinimide

NIR:

Near-infrared

PMT:

Photomultiplier tube

RPMI:

Roswell Park Memorial Institute medium

TATP:

1,4,8,9-Tetra-aza-triphenylene

TEAAc:

Triethylammonium acetate

TRF:

Time-resolved fluorescence

TR-FRET:

Time-resolved Förster resonance energy transfer

Tris:

Trishydroxymethylaminométhane

References

  1. Pope AJ et al (1999) Drug Discov Today 4:350–362

    CAS  Google Scholar 

  2. Kolb JM, Yamanaka G, Manly SP (1996) J Biomol Screen 1:203–210

    CAS  Google Scholar 

  3. Burke TJ, Loniello KR, Beebe JA, Ervin KM (2003) Comb Chem High Throughput Screen 6:183–194

    CAS  Google Scholar 

  4. Turconi S et al (2001) Drug Discov Today 1:27–39

    Google Scholar 

  5. Mathis G (1999) J Biomol Screen 4:309–314

    CAS  Google Scholar 

  6. Karvinen J et al (2002) J Biomol Screen 7:223–231

    CAS  Google Scholar 

  7. Bünzli JC, Piguet C (2005) Chem Soc Rev 34:1048–1077

    Google Scholar 

  8. Marshall NJ, Dakubu S, Jackson T, Ekins RP (1981) Pulsed light, time resolved fluoroimmunoassay. In: Albertini A, Ekins RP (eds) Monoclonal antibodies and developments in immunoassay. Elsevier, Amsterdam, pp 101–108

    Google Scholar 

  9. Kadkhodayan S, Elliott LO, Mausisa G, Ackerly Wallweber H, Deshayes K, Feng B, Fairbrother WJ (2007) Assay Drug Dev Technol 5:501–514

    CAS  Google Scholar 

  10. Mathis G (1993) Clin Chem 39:1953–1959

    CAS  Google Scholar 

  11. Hemmilä I, Webb S (1997) Drug Discov Today 2:373–381

    Google Scholar 

  12. Trinquet E, Mathis G (2006) Mol Biosyst 2:380–387

    CAS  Google Scholar 

  13. Simeonov A, Yasgar A, Jadhav A, Lokesh GL, Klumpp Ca, Michael S, Austin CP, Natarajan A, Inglese J (2008) Anal Biochem 375:60–70

    CAS  Google Scholar 

  14. Klumpp M, Boettcher A, Becker D, Meder G, Blank J, Leder L et al (2006) J Biomol Screen 11:617–633

    CAS  Google Scholar 

  15. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung CY, Chang W, Hirsch JD, Beechem JM, Haugland RP, Haugland RP (2003) J Histochem Cytochem 51:1699–1712

    CAS  Google Scholar 

  16. Thomas DD, Carlsen WF, Stryer L (1978) Proc Natl Acad Sci U S A 75:5746–5750

    CAS  Google Scholar 

  17. Riddle SM, Vedvik KL, Hanson GT, Vogel KW (2006) Anal Biochem 356:108–116

    CAS  Google Scholar 

  18. Hemmilä I, Laitala V (2005) J Fluoresc 15:529–542

    Google Scholar 

  19. Leonard JP, Nolan CB, Stomeo F, Gunnlaugsson T (2007) Top Curr Chem 281:1–43

    CAS  Google Scholar 

  20. Pope AJ, Haupts UM, Moore KJ (1999) Drug Discov Today 4:350–362

    CAS  Google Scholar 

  21. Alpha-Bazin B, Bazin H, Guillemer S, Sauvaigo S, Mathis G (2000) Nucleosides Nucleotides Nucleic Acids 19:1463–1474

    CAS  Google Scholar 

  22. Montgomery C, Murray B, New EJ, Pal R, Parker D (2009) Acc Chem Res 42:925–937

    Google Scholar 

  23. Gudgin-Dickson EF, Pollak A, Diamandis EP (1995) J Photochem Photobiol B Biol 27:3–19

    CAS  Google Scholar 

  24. Poole RA, Kielar F, Richardson SL, Stenson PA, Parker D (2006) Chem Commun 39:4084–4086

    Google Scholar 

  25. Kielar F, Montgomery CP, New EJ, Parker D, Poole RA, Richardson SL, Stenson PA (2007) Org Biomol Chem 5:2975–2982

    CAS  Google Scholar 

  26. Bazin H, Guillemer S, Mathis G (2002) J Fluoresc 12:245–248

    CAS  Google Scholar 

  27. Lis S (2002) J Alloys Comp 341(1–2):45–50

    CAS  Google Scholar 

  28. Horuk R, Huang JJ, Covington M, Newton RC (1987) J Biol Chem 262(34):16275–16278

    CAS  Google Scholar 

  29. Mukkala VM, Sund C, Kwiatkowski M, Pasanen P, Högberg M, Kankare J, Takalo H (1992) Helv Chim Acta 75:1621–1632

    CAS  Google Scholar 

  30. Mukkala VM, Helenius M, Hemmilä I, Kankare J, Takalo H (1993) Helv Chim Acta 76:1361–1378

    CAS  Google Scholar 

  31. Takalo H, Hemmilä I, Sutela T, Latva M (1996) Helv Chim Acta 79:789–802

    CAS  Google Scholar 

  32. Takalo H, Mukkala V-M. Luminescent lanthanide chelates. WO/1993/011433

    Google Scholar 

  33. Kankare J, Takalo H, Hänninen E, Helenius M, Mukkala V-M. Terpyridine derivatives. WO/1990/000550

    Google Scholar 

  34. Toner JL, Hilborn DA, Murray BJ, Hossain TZ, Snow RA, Saha AK, Philion R, Shearman CW, Shah C (1998) US Patent 5,707,603

    Google Scholar 

  35. Tuomola M, Cooper KM, Lahdenperä S, Baxter GA, Elliott CT, Kennedy DG, Lövgren T (2002) Analyst 127:83–86

    CAS  Google Scholar 

  36. Saha AK, Kross K, Kloszewski ED, Upson DA, Toner JL, Snow RA, Black CDV, Desai VC (1993) J Am Chem Soc 115:11032–11033

    CAS  Google Scholar 

  37. Jones SG, Lee DY, Wright JF, Jones CN, Teear ML, Gregory SJ, Burns DD (2001) J Fluoresc 11:13–21

    CAS  Google Scholar 

  38. Cooper ME, Sammes PG (2000) J Chem Soc Perkin Trans 28:1695–1700

    Google Scholar 

  39. Takalo H, Mukkala VM (1993) WO 93/11433

    Google Scholar 

  40. Nishioka T, Yuan J, Yamamoto Y, Sumitomo K, Wang Z, Hashino K, Hosoya C, Ikawa K, Wang G, Matsumoto K (2006) Inorg Chem 45:4088–4096

    CAS  Google Scholar 

  41. Kimura H, Mukaida M, Watanabe M, Hashino K, Nishioka T, Tomino Y, Yoshida K, Matsumoto K (2008) Anal Biochem 372:119–121

    CAS  Google Scholar 

  42. Ylikoski A, Hellman J, Matikainen T, Käkönen SM, Karp M, Väänänen HK, Lövgren T, Pettersson K (1998) J Bone Miner Res 13:1183–1190

    CAS  Google Scholar 

  43. Latva M, Takalo H, Mukkala VM, Matachescu C, Rodriguez-Ubis JC, Kankare J (1997) J Luminesc 75:149–169

    CAS  Google Scholar 

  44. Brunet E, Juanez O, Sedano R, Rodríguez-Ubis JC (2007) Tetrahedron Lett 7:1091–1094

    Google Scholar 

  45. Brunet E, Juanes O, Sedano R, Rodríguez-Ubis JC (2002) Photochem Photobiol Sci 7:613–618

    Google Scholar 

  46. Selvin PR, Jancarik J, Li M, Hung LW (1996) Inorg Chem 35:700–705

    CAS  Google Scholar 

  47. Kim SH, Ge P, Katzenellenbogen JA (2009) Chem Commun 2:183–5

    Google Scholar 

  48. Saroja G, Sankaran NB, Samanta A (1996) Chem Phys Lett 249:392–398

    CAS  Google Scholar 

  49. Shafer DE, Inman JK, Lees A (2000) Anal Biochem 282(1):161–164

    CAS  Google Scholar 

  50. Li M, Selvin PR (1995) J Am Chem Soc 117:8132–8138

    CAS  Google Scholar 

  51. Xiao M, Selvin PR (2001) J Am Chem Soc 123:7067–7073

    CAS  Google Scholar 

  52. Weibel N, Charbonnière L, Guardigli M, Roda A, Ziessel R (2004) J Am Chem Soc 126:4888–4896

    CAS  Google Scholar 

  53. Charbonnière LJ, Weibel N, Retailleau P, Ziessel R (2006) Chem Eur J 13:346–58

    Google Scholar 

  54. Brunet E, Juanes O, Rodríguez-Blasco MA, Vila-Nova SP, Rodríguez-Ubis JC (2007) Tetrahedron Lett 48(8):1353–1355

    CAS  Google Scholar 

  55. Freire RO, Vila-Nova SP, Brunet E, Juanes O, Rodríguez-Ubis JC, Alves S Jr (2007) Chem Phys Lett 443(4–6):378–382

    CAS  Google Scholar 

  56. Petoud S, Cohen SM, Bünzli JCG, Raymond KN (2003) J Am Chem Soc 125:13324–13325

    CAS  Google Scholar 

  57. Raymond KN (2009) US20090036537A1

    Google Scholar 

  58. Trinquet E, Gregor N, Degorce F, Tardieu JL, Seguin P (2008) Poster 11023, SBS. http://www.htrf.com/files/resources/poster_ip-one-tb_sbs_08_ss-couple.pdf

  59. Samuel APS, Moore EG, Melchior M, Xu J, Raymond KN (2008) Inorg Chem 47:7535–7544

    CAS  Google Scholar 

  60. Macmanus JP, Hogue CW, Marsden BJ, Sikorska Sikorska M, Szabo AG (1990) J Biol Chem 265:10358–10366

    CAS  Google Scholar 

  61. Reynolds AM, Sculimbrene BR, Imperiali B (2008) Bioconj Chem 19:588–91

    CAS  Google Scholar 

  62. Suchý M, Hudson RHE (2008) Chem Eur J 29:4847–4865

    Google Scholar 

  63. Hermann P, Kotek J (2008) Ten-membered rings or larger with one or more nitrogen atoms. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (eds) Comprehensive heterocyclic chemistry III. Elsevier, Oxford, pp 613–666

    Google Scholar 

  64. De Cola L, Smailes DL, Vallarino LM (1986) Inorg Chem 25:1729–1732

    Google Scholar 

  65. Saito K, Lee RT, Lee YC (1998) Anal Biochem 258(2):311–314

    CAS  Google Scholar 

  66. Leif RC, Vallarino LM, Becker MC, Yang S (2006) Cytometry A 69:940–946

    Google Scholar 

  67. Vallarino LM, Leif RC (1997) Macrocycle complexes of yttrium, the lanthanides and the actinides having peripheral coupling functionalities continuation-in-part. US Patent 5,696,240

    Google Scholar 

  68. Sabbatini N, De Cola L, Vallarino LM, Blasse G (1987) J Phys Chem 91:4681–4685

    CAS  Google Scholar 

  69. Leif RC, Vallarino LM, Becker MC, Yang S (2006) Cytometry A 69A:767–778

    CAS  Google Scholar 

  70. Lee YC, Kawasaki N, Lee RT, Suzuki N (1998) Glycobiology 8:849–856

    CAS  Google Scholar 

  71. Leif RC, Becker MC, Bromm AJ Jr, Vallarino LM, Williams JW, Williams SA, Yang S (2002) Optimizing the luminescence of lanthanide(III) macrocyclic complexes for the detection of Anti5BrdU. In: Farkas DL, Leif RC (eds) Optical diagnostics of living cells V. SPIE Proceedings, vol 4622, pp 250–261

    Google Scholar 

  72. Jin D, Piper JA, Leif RC, Yang S, Ferrari BC, Yuan J, Wang G, Vallarino LM, Williams JW (2009) J Biomed Opt 14 (in press). doi: 10.1117/1.3103770

    Google Scholar 

  73. Hancock R (1992) J Chem Educ 69:615–621

    CAS  Google Scholar 

  74. Táborský P, Svobodovál I, Hnatejko Z, Lubal P, Lis S, Försterová M, Hermann P, Lukeš I, Havell J (2005) J Fluoresc 15:507–512

    Google Scholar 

  75. Cacheris WP, Nickel SK, Sherry AD (1987) Inorg Chem 26:958–960

    CAS  Google Scholar 

  76. Kumar K, Chang CA, Tweedle MF (1993) Inorg Chem 32:587–593

    CAS  Google Scholar 

  77. Wu SL, Horrocks WD Jr (1997) J Chem Soc Dalton Trans 9:1497–1502

    Google Scholar 

  78. Aime S, Botta M, Crich SG, Giovenzana GB, Jommi G, Pagliarin R, Sisti M (1997) Inorg Chem 36:2992–3000

    CAS  Google Scholar 

  79. Siaugue JM, Segat-Dioury F, Favre-Reguillon A, Wintgens V, Madic C, Guy A (2003) J Photochem Photobiol A 156:23–29

    CAS  Google Scholar 

  80. Foos J, Moeller T, Thompson LC (1962) J Inorg Nucl Chem 24:499

    Google Scholar 

  81. Ge P, Selvin PR (2008) Bioconj Chem 19:1105–1111

    CAS  Google Scholar 

  82. Nonat A, Gateau C, Fries PH, Mazzanti M (2006) Chem Eur J 12:7133–7150

    CAS  Google Scholar 

  83. Vereb G, Jares-Erijman E, Selvin PR, Jovin TM (1998) Biophys J 74:2210–2222

    CAS  Google Scholar 

  84. Charbonniere ZR, Guardigli M, Roda A, Sabbatini N, Cesario M (2001) J Am Chem Soc 123:2436–2437

    CAS  Google Scholar 

  85. Hanaoka K, Kikuchi K, Kobayashi S, Nagano T (2007) J Am Chem Soc 129:13502–13509

    CAS  Google Scholar 

  86. Ghose S, Trinquet E, Laget M, Bazin H, Mathis G (2008) J Alloys Comp 451:35–37

    CAS  Google Scholar 

  87. Beeby S, Botchway SW, Clarkson IM, Faulkner S, Parker AW, Parker D, Williams JA (2000) J Photochem Photobiol B 57:83–89

    CAS  Google Scholar 

  88. Pal R, Parker D, Costello LC (2009) Org Biomol Chem 7:1525–1528

    CAS  Google Scholar 

  89. Poole RA, Bobba G, Cann MJ, Frias JC, Parker D, Peacock RD (2005) Org Biomol Chem 3:1013–1024

    CAS  Google Scholar 

  90. Poole RA (2006) PhD Thesis, Durham University (UK)

    Google Scholar 

  91. Poole RA, Montgomery CP, New EJ, Congreve A, Parker D, Botta M (2007) Org Biomol Chem 5:2055–2062

    CAS  Google Scholar 

  92. Atkinson P, Findlay KS, Kielar F, Pal R, Parker D, Poole RA, Puschmann H, Richardson SL, Stenson PA, Thompson AL, Yu J (2006) Org Biomol Chem 4:1707–1722

    CAS  Google Scholar 

  93. Yu J, Parker D, Pal R, Poole RA, Cann MJ (2006) J Am Chem Soc 128:2294–2299

    CAS  Google Scholar 

  94. Montgomery CP, Parker D, Lamarque L (2007) Chem Commun 37:3841–3843

    Google Scholar 

  95. Murray BS, New EJ, Pal R, Parker D (2008) Org Biomol Chem 6(12):2085–94

    CAS  Google Scholar 

  96. Manning HC, Goebel T, Thompson RC, Price RR, Lee H, Bornhop DJ (2004) Bioconj Chem 15:1488–95

    CAS  Google Scholar 

  97. Manning HC, Goebel T, Marx JN, Bornhop DJ (2002) Org Lett 4:1075–1078

    CAS  Google Scholar 

  98. Manning HC, Goebel T, Marx JN, Bornhop DJ (2006) Bioconj Chem 17:735–740

    CAS  Google Scholar 

  99. Polášek M, Kotek J, Hermann P, Císařová I, Binnemans K, Lukeša I (2009) Inorg Chem 48:466–475

    Google Scholar 

  100. Nasso I, Bedel S, Galaup C, Picard C (2008) Eur J Inorg Chem:2064–2074

    Google Scholar 

  101. Tircsó G, Kovács Z, Sherry AD (2006) Inorg Chem 45:9269–9280

    Google Scholar 

  102. Bornhop DJ, Hubbard DS, Houlne MP, Adair C, Kiefer GE, Pence BC, Morgan DL (1999) Anal Chem 71:2607–2615

    CAS  Google Scholar 

  103. Kiefer GE, Jackson L, Bornhop DJ (1999) US Patent 5,928,627

    Google Scholar 

  104. Hubbard DS (1998) Master of Science, University of Texas

    Google Scholar 

  105. Nasso I, Galaup C, Havas F, Tisnès P, Picard C, Laurent S, Vander Elst L, Muller RN (2005) Inorg Chem 44:8293–8305

    CAS  Google Scholar 

  106. Galaup C, Couchet JM, Picard C, Tisnès P (2001) Tetrahedron Lett 42:6275–6278

    CAS  Google Scholar 

  107. Galaup C, Couchet JM, Bedel S, Tisnès P, Picard C (2005) J Org Chem 70:2274–2284

    CAS  Google Scholar 

  108. Zheng Q, Dai H, Merritt ME, Malloy C, Pan CY, Li WH (2005) J Am Chem Soc 127:16178–16188

    CAS  Google Scholar 

  109. Sabbatini N, Guardigli M, Lehn JM (1993) Coord Chem Rev 123:201–228

    CAS  Google Scholar 

  110. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1995) Chem Rev 95:2529–2586

    CAS  Google Scholar 

  111. Alexander V (1995) Chem Rev 95:273–342

    CAS  Google Scholar 

  112. Yam VWW, Lo KKW (1999) Coord Chem Rev 184:157–240

    Google Scholar 

  113. Fallis IA (2002) Annu Rep Prog Chem Sect A: Inorg Chem 98:321–368

    CAS  Google Scholar 

  114. Lehn JM (1977) Pure Appl Chem 47:857–870

    Google Scholar 

  115. Lehn JM (1978) Acc Chem Res 2:49–57

    Google Scholar 

  116. Adam KR, Atkinson IM, Kim J, Lindoy LF, Matthews OA, Meehan GV, Raciti F, Skelton BW, Svenstrup N, White AH (2001) J Chem Soc Dalton Trans 16:2388–2397

    Google Scholar 

  117. Shestakova AK, Chertkov VA, Schneider HJ (2000) Tetrahedron Lett 41:6753–6756

    CAS  Google Scholar 

  118. Cross JP, Dadabhoy A, Sammes PG (2004) J Luminesc 110(3):113–124

    Google Scholar 

  119. Sabbatini N, Guardigli M, Lehn JM, Mathis G (1992) J Alloys Comp 180:363–367

    CAS  Google Scholar 

  120. Rodriguez-Ubis JC, Alpha B, Plancherel D, Lehn JM (1984) Helv Chim Acta 67:2264–2269

    CAS  Google Scholar 

  121. Kaes C, Katz A, Hosseini MW (2000) Chem Rev 100:3553–3590

    CAS  Google Scholar 

  122. Faulkner S, Matthews JL (2003) Fluorescent complexes for biomedical applications. In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II. Pergamon, Oxford, pp 913–944

    Google Scholar 

  123. Alpha B, Lehn JM, Mathis G (1987) Angew Chem Int Ed Engl 26:266–267

    Google Scholar 

  124. Alpha B, Balzani V, Lehn JM, Perathoner S, Sabbatini N (1987) Angew Chem Int Ed Engl 26:1266–1267

    Google Scholar 

  125. Alpha B, Ballardini R, Balzani V, Lehn JM, Perathoner S, Sabbatini N (1990) Photochem Photobiol 52:299–306

    CAS  Google Scholar 

  126. Havas F, Danel M, Galaup C, Tisnès P, Picard C (2007) Tetrahedron Lett 48:999–1002

    CAS  Google Scholar 

  127. Bazin H, Trinquet E, Mathis G (2002) J Biotechnol 82:233–50

    CAS  Google Scholar 

  128. Préaudat M, Ouled-Diaf J, Alpha-Bazin B, Mathis G, Mitsugi T, Aono Y, Takahashi K, Takemoto H (2002) J Biomol Screen 7:267–74

    Google Scholar 

  129. Gabourdes M, Bourgine V, Mathis G, Bazin H, Alpha-Bazin B (2004) Anal Biochem 333:105–13

    CAS  Google Scholar 

  130. Liang AM, Claret E, Ouled-Diaf J, Jean A, Vogel D, Light DR, Jones SW, Guilford WJ, Parkinson JF, Snider RM (2007) J Biomol Screen 12:536–545

    CAS  Google Scholar 

  131. Trinquet E, Fink M, Bazin H, Grillet F, Maurin F, Bourrier E, Ansanay H, Leroy C, Michaud A, Durroux T, Maurel D, Malhaire F, Goudet C, Pin JP, Naval M, Hernout O, Chretien F, Chapleur Y, Mathis G (2006) Anal Biochem 358:126–35

    CAS  Google Scholar 

  132. Lopez-Crapez E, Bazin H, Chevalier J, Trinquet E, Grenier J, Mathis G (2005) Hum Mutat 25(5):468–75

    CAS  Google Scholar 

  133. Lopez-Crapez E, Malinge JM, Gatchitch F, Casano L, Langlois T, Pugnière M, Roquet F, Mathis G, Bazin H (2008) Anal Biochem 383:301–6

    CAS  Google Scholar 

  134. Newton P, Harrison P, Clulow S (2008) J Biomol Screen 13:674–82

    CAS  Google Scholar 

  135. Vogel KW, Vedvik KL (2006) J Biomol Screen 11:439–443

    CAS  Google Scholar 

  136. Guillaumont D, Bazin H, Benech JM, Boyer M, Mathis G (2007) Chem Phys Chem 8:480–488

    CAS  Google Scholar 

  137. Blasse G, Dirksen GJ, Sabbatini N, Perathoner S, Lehn JM, Alpha B (1988) J Phys Chem 92:2419–2422

    CAS  Google Scholar 

  138. Vila-Nova SP, Pereira GAL, Albuquerque RQ, Mathis G, Bazin H, Autiero H, de Sá GF, Alves S Jr (2004) J Luminesc 109:173–179

    CAS  Google Scholar 

  139. Oliveira EJA, Vila Nova SP, Alves-Jr S, Santa-Cruz P, Molica RJR, Teixeira A, Malageño E, Lima Filho JL (2006) J Braz Chem Soc 17:243–250

    CAS  Google Scholar 

  140. Autiero H, Bazin H, Mathis G (2006) US Patent 7,087,384

    Google Scholar 

  141. Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin JP, Ansanay H (2004) Anal Biochem 329:253–62

    CAS  Google Scholar 

  142. Albizu L, Teppaz G, Seyer R, Bazin H, Ansanay H, Manning M, Mouillac B, Durroux T (2007) J Med Chem 50:4976–85

    CAS  Google Scholar 

  143. Albizu L, Breton BMN, Pin JP C, Manning M, Mouillac B, Barberis C, Durroux T (2006) Mol Pharmacol 70:1783–91

    CAS  Google Scholar 

  144. Johnsson N, Johnsson K (2007) Chem Biol 2:31–38

    CAS  Google Scholar 

  145. Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin JP (2008) Nat Methods 5:561–7

    CAS  Google Scholar 

  146. Azéma J, Galaup C, Picard C, Tisnès P, Ramos P, Juanes O, Rodríguez-Ubis JC, Brunet E (2000) Tetrahedron 56:2673–2681

    Google Scholar 

  147. Galaup C, Azéma J, Tisnès P, Picard C, Ramos P, Juanes O, Brunet E, Rodríguez-Ubis JC (2002) Helv Chim Acta 85:1613–1625

    CAS  Google Scholar 

  148. Pietraszkiewicz M, Karpiuk J, Pietraszkiewicz O (2000) J Alloys Comp 300:141–146

    Google Scholar 

  149. Paul-Roth CO, Lehn JM, Guilhem J, Pascard C (1995) Helv Chim Acta 78:1895–1903

    CAS  Google Scholar 

  150. Sabbatini N, Guardigli M, Manet I, Ungaro R, Casnati A, Ziessel R, Ulrich G, Asfari Z, Lehn JM (1995) Pure Appl Chem 67:135–140

    CAS  Google Scholar 

  151. Raymond KN, Corneillie TM, XU J (2008). Luminescent macrocyclic lanthanide complexes. WO 2008 063721A3

    Google Scholar 

  152. Hovinen J, Guy PM (2009) Bioconj Chem 20:404–421

    CAS  Google Scholar 

  153. Miller LW, Cornish VW (2005) Curr Opin Chem Biol 9:56–61

    CAS  Google Scholar 

  154. Connally RE, Piper JA (2008) Ann N Y Acad Sci 1130:106–116

    CAS  Google Scholar 

  155. Picot A, Baldeck D'Aléo A, PL GA, Duperray A, Andraud C, Maury O (2008) J Am Chem Soc 130:1532–1533

    CAS  Google Scholar 

  156. Mathis G, Trinquet E, Alberti P, Laget M (2009) Method for suppressing a FRET signal, FRET signal suppressor agents and use in a method for multiplexing biological events. US20090162861A1

    Google Scholar 

  157. Hildebrandt N, Löhmannsröben H-G (2007) Curr Chem Biol 1:167–186

    CAS  Google Scholar 

  158. Spangler CM, Spangler C, Schäerling M (2008) Ann N Y Acad Sci 1130:138–48

    CAS  Google Scholar 

  159. Jin D, Connally R, Piper J (2007) Cytometry A 71A:797–808

    CAS  Google Scholar 

  160. Petoud S, Muller G, Moore EG, Xu J, Sokolnicki J, Riehl JP, Le UN, Cohen SM, Raymond KN (2007) J Am Chem Soc 129:77–83

    CAS  Google Scholar 

  161. Fernández-Moreira V, Song B, Sivagnanam V, Chauvin AS, Vandevyver CDB, Gijs M, Hemmilä I, Lehr HA, Bünzli JCG (2010) Analyst 135:42–52

    Google Scholar 

  162. Hänninen P, Soukka J, Soini JT (2008) Ann N Y Acad Sci 1130:320–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bazin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathis, G., Bazin, H. (2010). Stable Luminescent Chelates and Macrocyclic Compounds. In: Hänninen, P., Härmä, H. (eds) Lanthanide Luminescence. Springer Series on Fluorescence, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2010_5

Download citation

Publish with us

Policies and ethics