Skip to main content

Need for and Metrological Approaches Towards Standardization of Fluorescence Measurements from the View of National Metrology Institutes

Part of the Springer Series on Fluorescence book series (SS FLUOR,volume 5)

Abstract

The need for standardization in fluorescence measurements to improve quality assurance and to meet regulatory demands is addressed from the viewpoint of National Metrology Institutes (NMIs). Classes of fluorescence standards are defined, including instrument calibration standards for the determination and correction of instrument bias, application-specific standards based on commonly used fluorescent labels, and instrument validation standards for periodic checks of instrument performance. The need for each class of standard is addressed and on-going efforts by NMIs and others are described. Several certified reference materials (CRMs) that have recently been developed by NMIs are highlighted. These include spectral correction standards, developed independently by both NIST and BAM (Germany), and fluorescence intensity standards for flow cytometry, developed by NIST. In addition, future activities at both institutes are addressed such as the development of day-to-day intensity standards.

  • Calibration
  • Emission standards
  • Fluorescence intensity standards
  • Fluorescence standards
  • Quality assurance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/4243_2008_049
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-75207-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakowicz JR (ed) (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  2. Lakowicz JR (ed) (1992–2004) Topics in fluorescence spectroscopy series, Vol. 1–8. Plenum Press, New York

    Google Scholar 

  3. Valeur B (ed) (2002) Molecular Fluorescence, Principles and Applications. Wiley-VCH, Weinheim

    Google Scholar 

  4. Wolfbeis OS (ed) (2001–2004) Springer series on fluorescence, methods and applications, Vol. 1–3. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Schulman SG (ed) (1985–1993) Molecular luminescence spectroscopy, Parts 1–3. Wiley Interscience, New York

    Google Scholar 

  6. Mason WT (1999) Fluorescent and luminescent probes for biological activity, 2nd edn. Academic Press, San Diego

    Google Scholar 

  7. Stokes GG (1852) On the change of refrangibility of light. Phil Trans R Soc Lond 142:463

    CrossRef  Google Scholar 

  8. Udenfriend S (1995) Development of the spectrophotofluorometer and its commercialization. Protein Sci 4:542

    CAS  CrossRef  Google Scholar 

  9. Resch-Genger U, Hoffmann K, Nietfeld W, Engel A, Ebert B, Macdonald R, Neukammer J, Pfeifer D, Hoffmann A (2005) How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J Fluoresc 15:337

    CrossRef  CAS  Google Scholar 

  10. Gaigalas AK, Li L, Henderson O, Vogt R, Barr J, Marti G, Weaver J, Schwartz A (2001) The development of fluorescence intensity standards. J Res Nat Inst Stand Technol 106:381

    Google Scholar 

  11. ASTM E 388-04 (2004) Spectral bandwidth and wavelength accuracy of fluorescence spectrometers. In: Annual book of ASTM standards, vol 03.06 (original version 1972)

    Google Scholar 

  12. ASTM E 578-01 (2001) Linearity of fluorescence measuring system. In: Annual book of ASTM standards, vol 03.06 (original version 1983)

    Google Scholar 

  13. ASTM E 579-04 (2004) Limit of detection of fluorescence of quinine sulfate. In: Annual book of ASTM standards, vol 03.06 (original version 1984)

    Google Scholar 

  14. Miller JN (ed) (1981) Techniques in visible and ultraviolet spectrometry, Vol. 2, Standards in fluorescence spectrometry. Chapman and Hall, New York

    Google Scholar 

  15. Eaton DF (1988) Reference compounds for fluorescent measurements. Pure Appl Chem 60:1107

    CrossRef  CAS  Google Scholar 

  16. Eaton DF (1990) Recommended methods for fluorescence decay analysis. Pure Appl Chem 62:1631

    CrossRef  CAS  Google Scholar 

  17. Shelton CF (1968) NBS Tech Note 417, Spectral emission properties of NBS standard phosphor samples under photo-excitation. US Government Printing Office, Washington, DC

    Google Scholar 

  18. Mavrodineanu R, Shultz JI, Menis O (eds) (1973) NBS Spec Pub 378, Accuracy in spectrophotometry and luminescence measurements. US Government Printing Office, Washington, DC (first appeared in (1972) J Res Nat Bur Stand 76A)

    Google Scholar 

  19. Mielenz KD, Velapoldi RA, Mavrodineanu R (eds) (1977) NBS Spec Pub 466, Standardization in spectrophotometry and luminescence measurements. US Government Printing Office, Washington, DC (first appeared in (1976) J Res Nat Bur Stand 80A)

    Google Scholar 

  20. Cehelnik ED, Mielenz KD, Velapoldi RA (1975) Polarization effects on fluorescence measurements. J Res Nat Bur Stand 79A:1

    CAS  Google Scholar 

  21. Mielenz KD, Cehelnik ED, McKenzie RL (1976) Elimination of polarization bias in fluorescence intensity measurements. J Chem Phys 64:370

    CrossRef  CAS  Google Scholar 

  22. Velapoldi RA, Mielenz KD (1980) NBS Spec Pub 260-64, A fluorescence standard reference material: quinine sulfate dihydrate. US Government Printing Office, Washington, DC

    Google Scholar 

  23. (1979) Certificate of analysis, Standard Reference Material 936, quinine sulfate dihydrate. National Bureau of Standards (This certificate is expired, replaced by [25])

    Google Scholar 

  24. (1994) Certificate of analysis, Standard Reference Material 936a, quinine sulfate dihydrate. National Institute of Standards and Technology (http://ts.nist.gov/ts/htdocs/230/232/232.htm)

    Google Scholar 

  25. (1989) Certificate of analysis, Standard Reference Material 1931, fluorescence emission standards for the visible region. National Institute of Standards and Technology (This SRM is no longer available.)

    Google Scholar 

  26. Thompson A, Eckerle KL (1989) Standards for corrected fluorescence spectra. Proc SPIE-Int Soc Opt Eng 1054:20

    CAS  Google Scholar 

  27. Saunders G, Parkes H (1999) Analytical molecular biology: quality and validation. RSC, Cambridge

    Google Scholar 

  28. (2005) ISO/IEC 17025, 2nd edn. International Organization for Standardization, Geneva

    Google Scholar 

  29. DeRose PC (2000) NIST workshop on luminescence standards for chemical analysis, Sept 1999. J Res Nat Inst Stand Technol 105:631 (http://nvl.nist.gov/pub/nistpubs/jres/105/4/j54ce-der.pdf)

    Google Scholar 

  30. Workshop (Jan 1998) Fluorescence intensity standards. NIST

    Google Scholar 

  31. Workshop (June 2000) New directions in fluorescence intensity standards. NIST

    Google Scholar 

  32. Workshop (March 2005) Towards national traceability in fluorescence intensity measurements. NIST

    Google Scholar 

  33. Workshop (Feb 2006) Improved antibody-based metrology in flow cytometry, NIST (comment: a ref. article should be available soon, the other 3 workshops, refs 31–33 were the precursors to this one)

    Google Scholar 

  34. Workshop (Dec 2002) Fluorescence standards for microarray assays. NIST (http://www.cstl.nist.gov/biotech/fluormicroarray/FluorMicroarrayWkshp12-10-2002.html)

    Google Scholar 

  35. Workshop (June 2003) Bioanalytical and biomedical applications of fluorescence techniques: instrument characterization and validation, traceability and need for reference materials. Resch-Genger U (BAM), Macdonald R (PTB), BERM-9

    Google Scholar 

  36. (2000) ISO; General Requirements for the Competence of Reference Material Producers, Second edition

    Google Scholar 

  37. (2003, draft) ISO; Reference materials — General and statistical principles for certification.

    Google Scholar 

  38. (1993) ISO; Guide to the expression of uncertainty in measurement; ISBN 92-67-10188-9, 1st edn. International Organization for Standardization, Geneva

    Google Scholar 

  39. DeRose PC, Kramer GW (2005) Bias in the absorption coefficient determination of a fluorescent dye, Standard Reference Material 1932 fluorescein solution. J Luminesc 113:314

    CrossRef  CAS  Google Scholar 

  40. Benson RC, Kues HA (1977) Absorption and fluorescence properties of cyanine dyes. J Chem Eng Data 22:379

    CrossRef  CAS  Google Scholar 

  41. Resch-Genger U, Pfeifer D, Hoffmann K, Flachenecker G, Hoffmann A, Monte C (2008) Linking fluorometry to radiometry: traceability and physical and fluorescence Standards. In: Resch-Genger U (ed) Standardization in Fluorometry: State-of-the Art and Future Challenges. Springer, Berlin Heidelberg

    Google Scholar 

  42. May W, Parris R, Beck C, Fassett J, Greenberg R, Guenther F, Kramer G, Wise S, Gills T, Colbert J, Gettings R, MacDonald B (2000) Definitions of terms and modes used at NIST for value-assignment of reference materials for chemical measurements, NIST Special Publication 260-136. US Government Printing Office, Washington, DC

    Google Scholar 

  43. (2004) Certificate of analysis, Standard Reference Material 1932, Fluorescein solution. National Institute of Standards and Technology (http://ts.nist.gov/ts/htdocs/230/232/232.htm)

    Google Scholar 

  44. (2007) Certificate of analysis, Standard Reference Material 2940, Relative intensity correction standard for fluorescence spectroscopy: Orange emission. National Institute of Standards and Technology. Certification of emission spectra in 1 nm-intervals. (http://ts.nist.gov/ts/htdocs/ 230/232/232.htm)

    Google Scholar 

  45. (2007) Certificate of analysis, Standard Reference Material 2941, Relative intensity correction standard for fluorescence spectroscopy: Green emission. National Institute of Standards and Technology. Certification of emission spectra in 1 nm-intervals. (http://ts.nist.gov/ts/htdocs/230/232/232.htm)

    Google Scholar 

  46. (2006) Certificate of analysis, Certified Reference Material BAM-F001, Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Federal Institute for Materials Research and Testing (BAM)

    Google Scholar 

  47. (2006) Certificate of analysis, Certified Reference Material BAM-F002, Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Federal Institute for Materials Research and Testing (BAM)

    Google Scholar 

  48. (2006) Certificate of analysis, Certified Reference Material BAM-F003, Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Federal Institute for Materials Research and Testing (BAM)

    Google Scholar 

  49. (2006) Certificate of analysis, Certified Reference Material BAM-F004, Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Federal Institute for Materials Research and Testing (BAM)

    Google Scholar 

  50. (2006) Certificate of analysis, Certified Reference Material BAM-F005, Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Federal Institute for Materials Research and Testing (BAM)

    Google Scholar 

  51. Hoffmann K, Monte C, Pfeifer D, Resch-Genger U (2005) Standards in fluorescence spectroscopy: Simple tool for the characterization of fluorescence instruments, GIT Lab J Eur 9:29

    CAS  Google Scholar 

  52. Hofstraat JW, Latuhihin MJ (1994) Correction of fluorescence spectra. Appl Spectrosc 48:436

    CrossRef  CAS  Google Scholar 

  53. Gardecki JA, Maroncelli M (1998) Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy. Appl Spectrosc 52:1179

    CrossRef  CAS  Google Scholar 

  54. Kovach RJ, Peterson WM (1994) The measurement of sensitivity in fluorescence spectroscopy. Am Lab 26:G32

    Google Scholar 

  55. Lifshitz IT, Meilman ML (1989) Standard sample for calibrating wavelength scales of spectral fluorometers. Sov J Opt Technol 55:487

    Google Scholar 

  56. Hollandt J, Taubert DR, Seidel J, Resch-Genger U, Gugg-Helminger A, Pfeifer D, Monte C (2005) Traceability in fluorometry: Part I, Physical standards. J Fluoresc 15:301

    CrossRef  CAS  Google Scholar 

  57. Monte C, Resch-Genger U, Pfeifer D, Taubert RD, Hollandt J (2006) Linking fluorescence measurement to radiometric units. Metrologia 43:S89

    CrossRef  Google Scholar 

  58. DeRose PC, Early EA, Kramer GW (2007) Qualification of a fluorescence spectrometer for measuring true fluorescence spectra. Rev Sci Instrum 78:033107

    CrossRef  CAS  Google Scholar 

  59. DeRose PC, Early EA, Kramer GW (2008) Measuring and certifying true fluorescence spectra with a qualified fluorescence spectrometer. In: Proc 5th Oxford Conf on spectrometry. Crown, UK

    Google Scholar 

  60. Zwinkels J (2008) Surface fluorescence: the only standardized method of measuring luminescence. In: Resch-Genger U (ed) Standardization in Fluorometry: State-of-the Art and Future Challenges, Springer, Berlin Heidelberg

    Google Scholar 

  61. Resch-Genger U, Pfeifer D (2006) Certification report, Calibration kit Spectral fluorescence standards BAM-F001–BAM-F005, BAM, Berlin

    Google Scholar 

  62. (2006) Certificate of analysis, Certified reference materials BAM-F001–BAM-F005, Calibration Kit, Spectral Ffluorescence Standards for the determination of the relative spectral responsivity of fluorescence instruments. Federal Institute for Materials Research and Testing (BAM). Certification according to ISO guides 34 and 35 in 1 nm-steps for three different spectral bandpasses of the BAM fluorometer.

    Google Scholar 

  63. Pfeifer D, Hoffmann K, Hoffmann A, Monte C, Resch-Genger U (2006) The calibration kit, Spectral fluorescence standards: A simple tool for the standardization of the spectral characteristics of fluorescence instruments. J Fluoresc 16:581

    CrossRef  CAS  Google Scholar 

  64. Hoffmann K, Resch-Genger U, Nitschke R (2005) Simple tool for the standardization of confocal spectral imaging systems. GIT Imaging Microsc 3:18

    Google Scholar 

  65. DeRose PC, Smith MV, Blackburn DH, Kramer GW (2008) Characterization of Standard Reference Material 2941, uranyl-ion-doped glass, spectral correction standard for fluorescence. J Luminesc 128:257

    CrossRef  CAS  Google Scholar 

  66. www.physics.nist.gov/PhysRefData/Handbook/index.html

    Google Scholar 

  67. Harrison GR (1982) MIT wavelength tables, Vol. 2, Wavelengths by element. MIT Press, Cambridge, MA

    Google Scholar 

  68. Zaidel AN, Prokofev VK, Raiskii SM, Slavnyi VA, Shreider EY (1970) Tables of spectral lines. Plenum Press, New York

    Google Scholar 

  69. Velapoldi RA, Epstein MS (1989) Luminescence standards for macro- and microspectrofluorimetry. In: Goldberg MC (ed) ACS symposium series 383, Luminescence applications in biological, chemical, environmental and hydrological sciences. American Chemical Society, Washington, DC, p 98

    CrossRef  Google Scholar 

  70. Rurack K (2008) Fluorescence quantum yields: traceability, methods of determination and standards. In: Resch-Genger U (ed) Standardization in Fluorometry: State-of-the Art and Future Challenges, Springer, Berlin Heidelberg

    Google Scholar 

  71. de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9:230

    CrossRef  Google Scholar 

  72. Wise SA, Sander LC, May WE (1993) Determination of polycyclic aromatic hydrocarbons by liquid chromatography. J Chromatogr 642:329

    CrossRef  CAS  Google Scholar 

  73. Duewer DL, Parris RM, WhiteV E, May WE, Elbaum H (2004) NIST Spec Pub 1012, An approach to the metrologically sound traceable assessment of the chemical purity of organic reference materials. US Government Printing Office, Washington, DC

    Google Scholar 

  74. Schwartz A, Gaigalas AK, Wang L, Marti GE, Vogt RF, Fernandez-Repollet E (2004) Formalization of the MESF unit of fluorescence intensity. Cytometry 57B:1

    CrossRef  Google Scholar 

  75. (2004) Report of Investigation, Reference Material 8640, Microspheres with immobilized fluorescein isothiocyanate. National Institute of Standards and Technology

    Google Scholar 

  76. Hultin LE, Matud JL, Giorgi JV (1998) Quantitation of CD38 activation antigen expression on CD8+ T cells in HIV-1 infection using CD4 expression on CD4+ T lymphocytes as a biological calibrator. Cytometry 33:123

    CrossRef  CAS  Google Scholar 

  77. Iyer SB, Hultin LE, Zawadzki JA, Davis KA, Giorgi JV (1998) Quantitation of CD38 expression using QuantiBRITE™ beads. Cytometry 33:206

    CrossRef  CAS  Google Scholar 

  78. Gruber HJ, Hahn CD, Kada C, Riener CK, Harms GS, Ahrer W (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalently linking to IgC and noncovalent binding to avidin. Bioconj Chem 11:696

    CrossRef  CAS  Google Scholar 

  79. Wang L, Gaigalas AK, Abbasi F, Marti GE, Vogt RF, Schwartz A (2002) Quantitating fluorescence intensity from fluorophores: Practical use of MESF values. J Res Nat Inst Stand Technol 107:339

    CAS  Google Scholar 

  80. Lenkei R, Mandy F, Marti G, Vogt R (eds) (1998) Special issue on quantitative fluorescence cytometry: An emerging consensus. Cytometry 33

    Google Scholar 

  81. Schwartz A, Wang L, Early E, Gaigalas AK, Zhang Y-Z, Marti GE, Vogt RF (2002) Quantitating fluorescence intensity from fluorophores: The definition of MESF assignment. J Res Nat Inst Stand Technol 107:83

    CAS  Google Scholar 

  82. Schwartz A, Marti GE, Gratama JW, Fernandez-Repollet E (1998) Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry. Cytometry 33:106

    CrossRef  CAS  Google Scholar 

  83. Schwartz A, Mendez M, Santiago G, Diaz L, Fernandez-Repollet E (1997) Applications of common quantitative fluorescent standards to multiple platforms: Comparison of commercial fluorescent calibration standards used in quantitative flow cytometry immunophenotyping analysis as a function of pH environment. Clin Immunol 17:14

    Google Scholar 

  84. Zenger VE, Vogt R, Mandy F, Schwartz A, Marti GE (1998), Quantitative flow cytometry: interlaboratory-variation. Cytometry 33:138

    CrossRef  CAS  Google Scholar 

  85. Marti GE, Vogt RF, Gaigalas AK, Hixson CS, Hoffman RA, Lenkei R, Magruder LE, Purvis NB, Schwartz A, Shapiro HM, Waggoner A (2004) Fluorescence calibration and quantitative measurements of fluorescence intensity, Approved guideline, NCCLS, I/LA24-A, vol 24 No. 26

    Google Scholar 

  86. Froehlich P (1989) Under the sensitivity specification for a fluorescence spectrophotometer. Int Lab 19:42

    Google Scholar 

  87. Gibeler R, McGown E, French T, Owicki JC (2005) Performance validation of microplate fluorimeters. J Fluoresc 15:363

    CrossRef  CAS  Google Scholar 

  88. Parke S, Watson AI, Webb RS (1970) Fluorescence decay times of divalent manganese in inorganic glasses. J Phys D Appl Phys 3:763

    CrossRef  CAS  Google Scholar 

  89. Howarth P, Redgrave F (2003) Metrology in short, 2nd edn. MKom Aps, Denmark

    Google Scholar 

  90. Sige Z, He H-J, Zong Y, Shi L, Wang L (2008) DNA microarrays: applications, future trends and need for standardization. In: Resch-Genger U (ed) Standardization in Fluorometry: State-of-the Art and Future Challenges. Springer, Berlin Heidelberg

    Google Scholar 

  91. Zong Y, Wang Y, Zhang S, Shi Y (2003) How to evaluate a microarray scanner. In: Hardiman G (ed) Microarrays methods and applications-nuts & bolts. DNA Press, USA

    Google Scholar 

  92. Shi L, Tong W, Su Z, Han T, Han J, Puri RK, Fang H, Frueh FW, Goodsaid FM, Guo L, Branham WS, Chen JJ, Xu ZA, Harris SC, Hong H, Xie Q, Perkins RG, Fuscoe JC (2005) Microarray scanner calibration curves: characteristics and implications. BMC Bioinformatics 6:S11

    CrossRef  CAS  Google Scholar 

  93. Wang L, Gaigalas AK, Satterfield MB, Salit M, Noble J (2007) Evaluating the quality of data from microarray measurements. Methods Mol Biol 381:121

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. C. DeRose or U. Resch-Genger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DeRose, P.C., Wang, L., Gaigalas, A.K., Kramer, G.W., Resch-Genger, U., Panne, U. (2008). Need for and Metrological Approaches Towards Standardization of Fluorescence Measurements from the View of National Metrology Institutes. In: Resch-Genger, U. (eds) Standardization and Quality Assurance in Fluorescence Measurements I. Springer Series on Fluorescence, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2008_049

Download citation