Need for Standardization of Fluorescence Measurements from the Instrument Manufacturer's View

  • Andrew Dixon
  • Thomas Heinlein
  • Ralf Wolleschensky
Chapter

Abstract

Characterization of fluorescence imaging systems from the manufacturer's view creates several challenges. What are the key parameters for which characterization is appropriate? How can the standardization procedures developed for use during manufacture be applied during installation and application? With so many instrument variables, how can procedures be developed that give precise diagnostic information? These are not simply questions of “standardized tests”. There are also issues of finding shared confidence in the tests amongst the different users of the systems. Ideally such tests should also allow objective comparison of the performance of systems of different design or from different manufacturers.

This chapter first discusses the factors that affect performance of fluorescence imaging systems and for which standardization tests are required. In many cases the performance in one respect is inter-dependent on the performance in another. The need to develop tests that uncouple these dependencies is discussed.

The chapter then discusses in more detail the particular issue of signal detection sensitivity and the development of standardized tests that are usable and acceptable both during manufacture and for demonstration of performance during installation and ongoing use of the instrument. It is shown that featureless test samples have significant advantages. They enable a range of performance tests to be made with a single sample in a way that is equally accessible to the manufacturer and end user.

Confocal Fluorescence Instrumentation Laser Scanning Microscopy Multiphoton Standards  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rost FWD (1991) Quantitative fluorescence microscopy. Cambridge University Press, Cambridge Google Scholar
  2. 2.
    Zwier JM, Van Rooij GJ, Hofstraat JW, Brakenhoff GJ (2004) J Microsc 216(Pt1):15 CrossRefGoogle Scholar
  3. 3.
    Zucker RM (2002) Microsc Tod 10(6):20 Google Scholar
  4. 4.
    Zucker RM (2002) Microsc Tod 10(7):8 Google Scholar
  5. 5.
    Hellmuth E, Mühlfriedel W (1996) Zeiss 1846–1905. Vom Atelier für Mechanik zum führenden Unternehmen des optischen Gerätebaus. Böhlau, Köln Google Scholar
  6. 6.
    Abbe E (1873) Arch Mikros Anat 9:413 CrossRefGoogle Scholar
  7. 7.
    McCarthy NJ, Evan GI (1998) Curr Top Dev Biol 36:259 CrossRefGoogle Scholar
  8. 8.
    Dunn KW, Mayor S, Myers JN, Maxfield FR (1994) FASEB J 8(9):573 Google Scholar
  9. 9.
    Berland KM (2004) Methods Mol Biol 261:383 Google Scholar
  10. 10.
    Hiraoka Y, Shimi T, Haraguchi T (2002) Cell Struct Funct 27:367 CrossRefGoogle Scholar
  11. 11.
    Dickinson ME, Bearman G, Tille S, Lansford R, Fraser SE (2001) Biotechniques 31(6):1272 Google Scholar
  12. 12.
    Dickinson ME, Simbürger E, Zimmermann B, Waters CW, Fraser SE (2003) J Biomed Opt 8:329 CrossRefGoogle Scholar
  13. 13.
    Wouters FS, Verveer PJ, Bastiaens IH (2001) Trends Cell Biol (11):5 Google Scholar
  14. 14.
    Kiyokawa E, Hara S, Nakamura T, Matsuda M (2006) Cancer Sci 97(1):8 CrossRefGoogle Scholar
  15. 15.
    Jares-Erijman EA, Jovin TM (2003) Nat Biotechnol 21(11):1387 CrossRefGoogle Scholar
  16. 16.
    Grunwald D, Cardoso MC, Leonhardt H, Buschmann V (2005) Curr Pharm Biotechnol 6(5):381 CrossRefGoogle Scholar
  17. 17.
    Kohl T, Schwille P (2005) Adv Biochem Eng Biotechnol 95:107 Google Scholar
  18. 18.
    Gosch M, Rigler R (2005) Adv Drug Deliv Rev 57(1):169 CrossRefGoogle Scholar
  19. 19.
    Houtsmuller AB (2005) Adv Biochem Eng Biotechnol 95:177 Google Scholar
  20. 20.
    Koster M, Frahm T, Hauser H (2005) Curr Opin Biotechnol 1:28 CrossRefGoogle Scholar
  21. 21.
    Mullineaux CW (2004) J Exp Bot 55(400):1207 CrossRefGoogle Scholar
  22. 22.
    Sprague BL, McNally JG (2005) Trends Cell Biol 15(2):84 CrossRefGoogle Scholar
  23. 23.
    Van Drogen F, Peter M (2001) Biol Cell 93(1–2):63 Google Scholar
  24. 24.
    Pawley J (2000) BioTechniques 28(5):884 Google Scholar
  25. 25.
    Zucker RM, Price O (2001) Cytometry 44(4):273 CrossRefGoogle Scholar
  26. 26.
    Henderson LO, Marti GE, Gaigalas A, Hannon WH, Vogt RF (1998) Cytometry 33:97 CrossRefGoogle Scholar
  27. 27.
    Schwartz A, Marti GE, Poon R, Gratama JW, Fernandez-Repollet E (1998) Cytometry 33:106 CrossRefGoogle Scholar
  28. 28.
    Schwartz A, Fernandez-Repollet E, Vogt R, Gratama JW (1996) Cytometry 26:22 CrossRefGoogle Scholar
  29. 29.
    Shapiro HM (1995) Practical Flow Cytometry. Wiley-Liss, New York Google Scholar
  30. 30.
    Chase ES, Hoffman RA (1998) Cytometry 33:267 CrossRefGoogle Scholar
  31. 31.
    Hoffman RA (2001) Methods in Cell Biology Vol. 63: Standardization and Quantitation in Flow Cytometry. Academic Press, New York Google Scholar
  32. 32.
    Wolf F, Geley S (2006) J Microsc 221(Pt1):72 CrossRefGoogle Scholar
  33. 33.
    Brakenhoff GJ, Wurpel GWH, Jalink K, Brocks L, Zwier JM (2005) J Microsc 219(Pt3):122 CrossRefGoogle Scholar
  34. 34.
    Stelzer EHK (1998) J Microsc 189(Pt1):15–24 CrossRefGoogle Scholar
  35. 35.
    Zucker RM (2005) Meth Mol Biol 319:77–136 CrossRefGoogle Scholar
  36. 36.
    Shotton DM (1995) Electronic light microscopy. Histochem Cell Biol 104:907–137 CrossRefGoogle Scholar
  37. 37.
    Sheppard CJR, Shotton DM (1997) Confocal Laser Scanning Microscopy. Springer, New York, p 9 Google Scholar
  38. 38.
    Hell SW, Stelzer EHK (1995) Handbook of Biological Confocal Microscopy. Plenum Press, New York, pp 347–354 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrew Dixon
    • 1
  • Thomas Heinlein
    • 1
  • Ralf Wolleschensky
    • 1
  1. 1.Carl Zeiss MicroImaging GmbHJenaGermany

Personalised recommendations