Skip to main content

Resonance Energy Transfer in Biophysics: Formalisms and Application to Membrane Model Systems

  • Chapter
  • First Online:
Fluorescence of Supermolecules, Polymers, and Nanosystems

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 4))

  • 2513 Accesses

Abstract

Useful models for resonance energy transfer (RET) are reviewed for several geometries relevant tomembranes (planar, bilayer, multilayer) and uniform donor and acceptor probe distribution. Extensions fornon-uniform distribution of fluorophores are presented and discussed. Selected examples of quantitativeapplications of RET to these systems are described. It is illustrated how information about lipid phaseseparation (phase composition, domain size, partition coefficients, kinetics of lipid demixing) lipid–peptide(domain induction/membrane aggregation), lipid–protein (lipid selectivity in the annular region) andlipid–DNA (lipoplex structural characterization) interactions can be recovered from time-resolvedRET data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York

    Book  Google Scholar 

  2. Förster T (1949) Experimentelle und theoretische Untersuchung des Zwischenmolekularen übergangs von Elektrinenanregungsenergie. Z Naturforsch 4a:321–327

    Google Scholar 

  3. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–193

    Article  CAS  Google Scholar 

  4. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Ann Rev Biochem 47:829–846

    Article  Google Scholar 

  5. Loura LMS, Prieto M (2000) Resonance energy transfer in heterogeneous planar and bilayer systems: theory and simulation. J Phys Chem B 104:6911–6919

    Article  CAS  Google Scholar 

  6. Tweet AG, Bellamy WD, Gaines GL Jr (1964) Fluorescence quenching and energy transfer in monomolecular films containing chlorophyll. J Chem Phys 41:2068–2077

    Article  CAS  Google Scholar 

  7. Wolber PK, Hudson BS (1979) An analytical solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210

    Article  CAS  Google Scholar 

  8. Davenport L, Dale RE, Bisby RH, Cundall RB (1985) Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance energy transfer. Biochemistry 24:4097–4108

    Article  CAS  Google Scholar 

  9. Berberan-Santos MN, Valeur B (1991) Fluorescence depolarization by electronic energy transfer in donor–acceptor pairs of like and unlike chromophores. J Chem Phys 95:8048–8055

    Article  CAS  Google Scholar 

  10. Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer in melittin oligomerization. Biophys J 69:1569–1583

    Article  CAS  Google Scholar 

  11. Kawski A (1983) Excitation energy transfer and its manifestation in isotropic media. Photochem Photobiol 4:487–508

    Article  Google Scholar 

  12. Van de Meer BW, Coker G III, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH, New York

    Google Scholar 

  13. Snyder B, Freire E (1982) Fluorescence energy transfer in two dimensions. A numeric solution for random and non-random distributions. Biophys J 40:137–148

    Article  CAS  Google Scholar 

  14. Medhage B, Mukhtar E, Kalman B, Johansson LB-Å, Molotkovsky JG (1992) Electronic energy transfer in anisotropic systems. Part 5. Rhodamine-lipid derivatives in model membranes. J Chem Soc Faraday Trans 88:2845–2851

    Article  CAS  Google Scholar 

  15. Gautier I, Tramier M, Duriex C, Coppey J, Pansu RB, Nicolas J-C, Kemnitz K, Coppey-Moisan M (2001) Homo-FRET microscopy in living cells to measure monomer–dimer transition of GFP-tagged proteins. Biophys J 80:3000–3008

    Article  CAS  Google Scholar 

  16. Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  CAS  Google Scholar 

  17. Farinha JPS, Martinho JMG, Yekta A, Winnik MA (1995) Direct nonradiative energy-transfer in polymer interphases – fluorescence decay functions from concentration profiles generated by Fickian diffusion. Macromolecules 28:6084–6088

    Article  CAS  Google Scholar 

  18. Yekta A, Winnik MA, Farinha JPS, Martinho JMG (1997) Dipole–dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. II. Systems with spherical symmetry. J Phys Chem A 101:1787–1792

    Article  CAS  Google Scholar 

  19. Farinha JPS, Spiro JG, Winnik MA (2004) Dipole–dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. III. Systems with cylindrical symmetry. J Phys Chem B 108:16392–16400

    Article  CAS  Google Scholar 

  20. Loura LMS, Fedorov A, Prieto M (2001) Fluid–fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys J 80:776–788

    Article  CAS  Google Scholar 

  21. Ballet PM, Van der Auweraer M, De Schryver FC, Lemmetyinen H, Vourimaa E (1996) Global analysis of the fluorescence decays of N,N′-dioctadecyl rhodamine B in Langmuir–Blodgett films of diacyl phosphatidic acids. J Phys Chem 100:13701–13715

    Article  CAS  Google Scholar 

  22. Liu YS, Li L, Ni S, Winnik M (1993) Recovery of acceptor concentration distribution in a direct energy transfer experiment. Chem Phys 177:579–589

    Article  CAS  Google Scholar 

  23. Shaklai N, Yguerabide J, Ranney HM (1977) Interaction of haemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 16:5585–5592

    Article  CAS  Google Scholar 

  24. Yguerabide J (1994) Theory for establishing proximity relations in biological membranes by excitation energy transfer measurements. Biophys J 66:683–693

    Article  CAS  Google Scholar 

  25. Gutierrez-Merino C (1981) Quantitation of the Förster energy transfer for two-dimensional systems. I. Lateral phase separation in unilamellar vesicles formed by binary phospholipids mixtures. Biophys Chem 14:247–257

    Article  CAS  Google Scholar 

  26. Gutierrez-Merino C (1981) Quantitation of the Förster energy transfer for two-dimensional systems. II. Protein distribution and aggregation state in biological membranes. Biophys Chem 14:259–266

    Article  CAS  Google Scholar 

  27. Gutierrez-Merino C, Munkonge F, Mata AM, East JM, Levinson BL, Napier RM, Lee AG (1987) The position of the ATP binding site on the (Ca2++ Mg2+)-ATPase. Biochim Biophys Acta 897:207–216

    Article  CAS  Google Scholar 

  28. Antollini SS, Soto MA, de Romanelli IB, Gutiérrez-Merino C, Sotomayor P, Barrantes FJ (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys J 70:1275–1284

    Article  CAS  Google Scholar 

  29. Bonini IC, Antollini SS, Gutiérrez-Merino C, Barrantes FJ (2002) Sphingomyelin composition and physical assymetries in native acetylcholine receptor-rich membranes. Eur Biophys J 31:417–427

    Article  CAS  Google Scholar 

  30. Fernandes F, Loura LMS, Koehorst R, Spruijt RB, Hemminga MA, Fedorov A, Prieto M (2004) Quantification of protein–lipid selectivity using FRET: Application to the M13 major coat protein. Biophys J 87:344–352

    Article  CAS  Google Scholar 

  31. Loura LMS, Fedorov A, Prieto M (1996) Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases. Biophys J 71:1823–1836

    Article  CAS  Google Scholar 

  32. Loura LMS, Fedorov A, Prieto M (2000) Membrane probe distribution heterogeneity: a resonance energy transfer study. J Phys Chem B 104:6920–6931

    Article  CAS  Google Scholar 

  33. Loura LMS, Castanho MARB, Fedorov A, Prieto M (2001) A photophysical study of the polyene antibiotic filipin Self-aggregation and filipin–ergosterol interaction. Biochim Biophys Acta 1510:125–135

    Article  CAS  Google Scholar 

  34. Loura LMS, Fedorov A, Prieto M (2000) Partition of membrane probes in a gel/fluid two-component lipid system: a fluorescence resonance energy transfer study. Biochim Biophys Acta 1467:101–112

    Article  CAS  Google Scholar 

  35. Mouritsen OG, Bloom M (1984) Mattress model of lipid–protein interactions in membranes. Biophys J 46:141–153

    Article  CAS  Google Scholar 

  36. Almeida PFF, Vaz WLC, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747

    Article  CAS  Google Scholar 

  37. Loura LMS, Fedorov A, Prieto M (2001) Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochim Biophys Acta 1511:236–243

    Article  CAS  Google Scholar 

  38. Simons K, Ikonen I (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  39. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  Google Scholar 

  40. Anderson RGW, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts and other lipid domains. Science 296:1821–1825

    Article  CAS  Google Scholar 

  41. de Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416

    Article  Google Scholar 

  42. de Almeida RFM, Loura LMS, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–1120

    Article  Google Scholar 

  43. Santos NC, Prieto M, Castanho MA (2003) Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim Biophys Acta 1612:123–135

    Article  CAS  Google Scholar 

  44. Veiga AS, Santos NC, Loura LMS, Fedorov A, Castanho MARB (2004) HIV fusion inhibitor peptide T-1249 is able to insert or adsorb to lipidic bilayers. Putative correlation with improved efficiency. J Am Chem Soc 126:14758–14763

    Article  CAS  Google Scholar 

  45. Stopar D, Spruijt RB, Wolfs CJAM, Hemminga MA (2003) Protein–lipid interactions of bacteriophage M13 major coat protein. Biochim Biophys Acta 1611:5–15

    Article  CAS  Google Scholar 

  46. Fernandes F, Loura LM, Prieto M, Koehorst R, Spruijt RB, Hemminga MA (2003) Dependence of M13 major coat protein oligomerization and lateral segregation on bilayer composition. Biophys J 85:2430–2441

    Article  CAS  Google Scholar 

  47. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  CAS  Google Scholar 

  48. Huang L, Hung M-C, Wagner E (eds) (1999) Nonviral vectors for gene therapy. Academic Press, San Diego

    Google Scholar 

  49. Lasic DD, Strey H, Stuart MCA, Podgornik R, Frederik PM (1997) The structure of DNA–liposome complexes. J Am Chem Soc 119:832–833

    Article  CAS  Google Scholar 

  50. Radler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814

    Article  CAS  Google Scholar 

  51. Madeira C, Loura LM, Aires-Barros MR, Fedorov A, Prieto M (2003) Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. Biophys J 85:3106–3119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís M.S. Loura .

Editor information

M. N. Berberan-Santos

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loura, L.M., Prieto, M. (2007). Resonance Energy Transfer in Biophysics: Formalisms and Application to Membrane Model Systems. In: Berberan-Santos, M.N. (eds) Fluorescence of Supermolecules, Polymers, and Nanosystems. Springer Series on Fluorescence, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2007_016

Download citation

Publish with us

Policies and ethics