Skip to main content

Gustation in Fish: Search for Prototype of Taste Perception

  • Chapter
  • First Online:
Chemosensory Systems in Mammals, Fishes, and Insects

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 47))

Abstract

Fish perceive water-soluble chemicals at the taste buds that are distributed on oropharyngeal and trunk epithelia. Recent progress in molecular analyses has revealed that teleosts and mammals share pivotal signaling components to transduce taste stimuli. The fish orthologs of taste receptors, fT1R and fT2R, show mutually exclusive expression in taste buds, and both are coexpressed with phospholipase C-β2 and the transient receptor potential M5 channel as common downstream components of taste receptor signals. Interestingly, fT1R heteromers are activated by various l-amino acids but not by sugars. This may reflects that in fish the energy metabolism depends primarily on gluconeogenesis from amino acids. fT2Rs are activated by denatonium benzoate, which is a bitter substance for mammals. It is thus likely that the preferable and aversive tastes for vertebrates, though their taste modalities somewhat vary, are transduced by the sensory conserved pathways. The comparative molecular biology of the fish taste system would lead to understanding a general logic of encoding taste modalities in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    Article  PubMed  CAS  Google Scholar 

  • Aihara Y, Yasuoka A, Yoshida Y, Ohmoto M, Shimizu-Ibuka A, Misaka T, Furutani-Seiki M, Matsumoto I, Abe K (2006) Transgenic labeling of taste receptor cells in model fish under the control of the 5′-upstream region of medaka phospholipase C-beta 2 gene. Gene Expr Pattern 7:149–157

    Article  Google Scholar 

  • Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232:1–61

    CAS  Google Scholar 

  • Barlow LA, Northcutt RG (1997) Taste buds develop autonomously from endoderm without induction by cephalic neural crest or paraxial mesoderm. Development 124:949–957

    PubMed  CAS  Google Scholar 

  • Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zucker CS, Ryba NJP (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    Article  PubMed  CAS  Google Scholar 

  • David HE, Peter MP, Keith PC (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid—base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  Google Scholar 

  • Faurion A (2006) Sensory interactions through neural pathways. Physiol Behav 89:44–46

    Article  PubMed  CAS  Google Scholar 

  • Finger TE (1976) Gustatory pathways in the bullhead catfish. 1. Connections of the anterior ganglion. J Comp Neurol 165:513–526

    Article  PubMed  CAS  Google Scholar 

  • Finger TE (1978) Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J Comp Neurol 180:691–705

    Article  PubMed  CAS  Google Scholar 

  • Finger TE (1997) Evolution of taste and solitary chemoreceptor cell systems. Brain Behav Evol 50:234–243

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Morita Y (1985) Two gustatory systems: facial and vagal gustatory nuclei have different brainstem connections. Science 227:776–778

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Böttger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100:8981–8986

    Article  PubMed  CAS  Google Scholar 

  • Goehler LE, Finger TE (1992) Functional organization of vagal reflex systems in the brain stem of the goldfish, Carassius auratus. J Comp Neurol 319:463–478

    Article  PubMed  CAS  Google Scholar 

  • Haffter P, Nüsslein-Volhard C (1996) Large scale genetics in a small vertebrate, the zebrafish. Int J Dev Biol 40:221–227

    PubMed  CAS  Google Scholar 

  • Harlow DE, Barlow LA (2007) Embryonic origin of gustatory cranial sensory neurons. Dev Biol 310:317–328

    Article  PubMed  CAS  Google Scholar 

  • Hellekant G, Ninomiya Y (1991) On the taste of umami in chimpanzee. Physiol Behav 49:927–934

    Article  PubMed  CAS  Google Scholar 

  • Höfer D, Püschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA 93:6631–6634

    Article  PubMed  Google Scholar 

  • Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551

    Article  PubMed  CAS  Google Scholar 

  • Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Takei Y (2002) Diverse adaptability in oryzias species to high environmental salinity. Zool Sci 19:727–734

    Article  PubMed  Google Scholar 

  • Ishimaru Y, Okada S, Naito H, Nagai T, Yasuoka A, Matsumoto I, Abe K (2005) Two families of candidate taste receptors in fishes. Mech Dev 122:1310–1321

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103:12569–12574

    Article  PubMed  CAS  Google Scholar 

  • Iwamatsu T (1997) The integrated book for the biology of the medaka. Daigaku Kyoiku Shuppan, Okayama (in Japanese)

    Google Scholar 

  • Kanwal JS, Finger TE (1997) Parallel medullary gustatospinal pathways in a catfish: possible neural substrates for taste-mediated food search. J Neurosci 17:4873–4885

    PubMed  CAS  Google Scholar 

  • Kiyohara S, Hidaka I (1991) Receptor sites for alanine, proline, and betaine in the palatal taste system of the puffer, Fugu pardalis. J Comp Physiol 169:523–530

    Article  Google Scholar 

  • Kotrschal K, Finger TE (1996) Secondary connections of the dorsal and ventral facial lobes in a teleost fish, the rockling (Ciliata mustela). J Comp Neurol. 370:415–426

    Article  PubMed  CAS  Google Scholar 

  • Lagerström MC, Hellström AR, Gloriam DE, Larsson TP, Schiöth HB, Fredriksson R (2006) The G protein-coupled receptor subset of the chicken genome. PLoS Comput Biol 2:e54

    Article  PubMed  Google Scholar 

  • Lamb CF, Finger TE (1996) Axonal projection patterns of neurons in the secondary gustatory nucleus of channel catfish. J Comp Neurol 365:585–593

    Article  PubMed  CAS  Google Scholar 

  • Loosli F, Köster RW, Carl M, Kühnlein R, Henrich T, Mücke M, Krone A, Wittbrodt J (2000) A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes). Mech Dev 97:133–139

    Article  PubMed  CAS  Google Scholar 

  • Marui T, Caprio J (1982) Electrophysiological evidence for the topographical arrangement of taste and tactile neurons in the facial lobe of the channel catfish. Brain Res 231:185–190

    Article  PubMed  CAS  Google Scholar 

  • Marui T, Kiyohara S (1987) Structure—activity relationships and response features for amino acids in fish taste. Chem Senses 12:265–275

    Article  CAS  Google Scholar 

  • Mediavilla C, Molina F, Puerto A (2000) The role of the lateral parabrachial nuclei in concurrent and sequential taste aversion learning in rats. Exp Brain Res 134:497–505

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11

    Article  PubMed  CAS  Google Scholar 

  • Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ (2005) The receptors and coding logic for bitter taste. Nature 434:225–229. Erratum (2007) Nature 446:342

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265

    Article  PubMed  CAS  Google Scholar 

  • Naito T, Saito Y, Yamamoto J, Nozaki Y, Tomura K, Hazama M, Nakanishi S, Brenner S (1998) Putative pheromone receptors related to the Ca2+ sensing receptor in Fugu. Proc Natl Acad Sci USA 95:5178–5181

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Hori H, Shimizu N, Kohara Y, Takeda H (2004) Medaka genomics: a bridge between mutant phenotype and gene function. Mech Dev 121:619–628

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (2004) Taste buds: development and evolution. Brain Behav Evol 64:198–206

    Article  PubMed  Google Scholar 

  • Oike H, Nagai T, Furuyama A, Okada S, Aihara Y, Ishimaru Y, Marui T, Matsumoto I, Misaka T, Abe K (2007) Characterization of ligands for fish taste receptors. J Neurosci 27:5584–5592

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Caprio J (1999a) Facial taste responses of the channel catfish to binary mixtures of amino acids. J Neurophysiol 82:564–549

    CAS  Google Scholar 

  • Ogawa K, Caprio J (1999b) Citrate ions enhance taste responses to amino acids in the largemouth bass. J Neurophysiol 81:1603–1607

    CAS  Google Scholar 

  • Perry SF, Gilmour KM (2002) Sensing and transfer of respiratory gases at the fish gill. J Exp Zool 293:249–263

    Article  PubMed  Google Scholar 

  • Reilly S (1999) The parabrachial nucleus and conditioned taste aversion. Brain Res Bull 48:239–254

    Article  PubMed  CAS  Google Scholar 

  • Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, Yang H, Driever W (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123:165–178

    PubMed  CAS  Google Scholar 

  • Shi P, Zhang J (2007) Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 17:166–174

    Article  PubMed  CAS  Google Scholar 

  • Stone LM, Finger TE, Tam PP, Tan SS (1995) Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci USA 92:1916–1920

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Maeda R, Shoji W, Wada H, Masai I, Shiraki T, Kobayashi M, Nakayama R, Okamoto H (2007) Novel mutations affecting axon guidance in zebrafish and a role for plexin signalling in the guidance of trigeminal and facial nerve axons. Development

    Google Scholar 

  • Travers J, Dinardo LA, Karimnamazi H (1997) Motor and premotor mechanisms of licking. Neurosci Biobehav Rev 21:631–647

    Article  PubMed  CAS  Google Scholar 

  • Travers JB, DiNardo LA, Karimnamazi H (2000) Medullary reticular formation activity during ingestion and rejection in the awake rat. Exp Brain Res 130:78–92

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Ugawa S, Yamamura H, Imaizumi Y, Shimada S (2003) Functional interaction between T2R taste receptors and G-protein alpha subunits expressed in taste receptor cells. J Neurosci 23:7376–7380

    PubMed  CAS  Google Scholar 

  • Valentincic T, Caprio J (1997) Visual and chemical release of feeding behavior in adult rainbow trout. Chem Senses 22:375–382

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80

    Article  CAS  Google Scholar 

  • Yasuoka A, Abe K, Arai S, Emori Y (1996) Molecular cloning and functional expression of the alpha1A-adrenoceptor of medaka fish, Oryzias latipes. Eur J Biochem 235:501–507

    Article  PubMed  CAS  Google Scholar 

  • Yasuoka A, Aihara Y, Matsumoto I, Abe K (2004a) Phospholipase C-beta 2 as a mammalian taste signaling marker is expressed in the multiple gustatory tissues of medaka fish, Oryzias latipes. Mech Dev 121:985–989

    Article  CAS  Google Scholar 

  • Yasuoka A, Hirose Y, Yoda H, Aihara Y, Suwa H, Niwa K, Sasado T, Morinaga C, Deguchi T, Henrich T, Iwanami N, Kunimatsu S, Abe K, Kondoh H, Furutani-Seiki M (2004b) Mutations affecting the formation of posterior lateral line system in Medaka, Oryzias latipes. Mech Dev 121:729–738

    Article  CAS  Google Scholar 

  • Yasuoka A, Okada S, Abe K (2006) General logic for taste reception. Jikken Igaku Suppl Yodo-sha 125–30 (in Japanese)

    Google Scholar 

  • Yoshida Y, Saitoh K, Aihara Y, Okada S, Misaka T, Abe K (2007) Transient receptor potential channel M5 and phospholipaseC-beta2 colocalizing in zebrafish taste receptor cells. Neuroreport 18:1517–1520

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara Y (2002) Visualizing selective neural pathways with WGA transgene: combination of neuroanatomy with gene technology. Neurosci Res 44:133–140

    Article  PubMed  CAS  Google Scholar 

  • Yoshii K, Kurihara K (1983) Ion dependence of the eel taste response to amino acids. Brain Res 280:63–67

    Article  PubMed  CAS  Google Scholar 

  • Yoshii K, Yokouchi C, Kurihara K (1986) Synergistic effects of 5′-nucleotides on rat taste responses to various amino acids. Brain Res 367:45–51

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Toshihide Nagai and Yoshiko Aihara for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yasuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Yasuoka, A., Abe, K. (2009). Gustation in Fish: Search for Prototype of Taste Perception. In: Korsching, S., Meyerhof, W. (eds) Chemosensory Systems in Mammals, Fishes, and Insects. Results and Problems in Cell Differentiation, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_6

Download citation

Publish with us

Policies and ethics