Skip to main content

Molecular Mechanism of Ceramide Trafficking from the Endoplasmic Reticulum to the Golgi Apparatus in Mammalian Cells

  • Chapter
Sphingolipid Biology

Summary

Synthesis and sorting of lipids are essential events for membrane biogenesis and its homeostasis. The endoplasmic reticulum (ER) is the center of the de novo synthesis of various lipid types. Trafficking of various lipids from the ER to other organelles has been suggested to occur by mechanisms different from the vesicle-mediated mechanism for protein trafficking. However, molecular mechanisms underlying intracellular trafficking of lipids remain poorly understood. Ceramide is synthesised at the ER, and translocated to the Golgi compartment for conversion to sphingomyelin (SM). We previously isolated a mammalian cultured cell mutant defective in ceramide trafficking, and have recently identified a key factor (named CERT) for ceramide trafficking in functional rescue experiments and proposed a molecular lipid extraction and transfer model for the non-vesicular mechanism of CERT-mediated trafficking of ceramide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  • Ardail D, Lerme F, Louisot P (1991) Involvement of contact sites in phosphatidylserine import into liver mitochondria. J Biol Chem, 266, 7978–7881.

    PubMed  CAS  Google Scholar 

  • Ardail D, Popa I, Bodennec J, Louisot P, Schmitt D, Portoukalian J (2003) The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. Biochem J, 371, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Tuymetova G, Tsiomenko A, Varnai P, Balla T (2005) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-Ill alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell, 16, 1282–1295.

    Article  PubMed  CAS  Google Scholar 

  • Beckers CJM, Keller DS, Balch WE (1987) Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell, 50, 523–534.

    Article  PubMed  CAS  Google Scholar 

  • Collins RN, Warren G (1992) Sphingolipid transport in mitotic HeLa cells. J Biol Chem, 267, 24906–24911.

    PubMed  CAS  Google Scholar 

  • Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J, 351, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Nishijima M, Hanada K (1999) Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J Cell Biol 144, 673–685.

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Nishijima M, Itabe H, Takano T, Hanada K (2000) Reduction of sphingomyelin level without accumulation of ceramide in Chinese hamster ovary cells affects detergent-resistant membrane domains and enhances cellular cholesterol efflux to methyl-beta-cyclodextrin. J Biol Chem, 275, 34028–34034.

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi T, Yasuda S, Fukasawa M, Nishijima M, Hanada K (2000) Reconstitution of ATP-and cytosol-dependent transport of de novo synthesized ceramide to the site of sphingomyelin synthesis in semi-intact cells. J Biol Chem, 275, 29938–29945.

    Article  PubMed  CAS  Google Scholar 

  • Funato K, Riezman H (2001) Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J Cell Biol, 155, 949–959.

    Article  PubMed  CAS  Google Scholar 

  • Futerman AH, Pagano RE (1991) Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J, 280, 295–302.

    PubMed  CAS  Google Scholar 

  • Futerman AH, Stieger B, Hubbard AL, Pagano RE (1990) Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem, 265, 8650–8657.

    PubMed  CAS  Google Scholar 

  • Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol, 6, 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta, 1632, 16–30.

    PubMed  CAS  Google Scholar 

  • Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, Nishijima M (1998) Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem, 273, 33787–33794.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature, 426, 803–809.

    Article  PubMed  CAS  Google Scholar 

  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. EMBO J, 23, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Burger KNJ, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol, 17, 259–267.

    Article  Google Scholar 

  • Kaplan MR, Simoni RD (1985a) Intracellular transport of phosphatidylcholine to the plasma membrane. J Cell Biol, 101, 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MR, Simoni RD (1985b) Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J Cell Biol, 101, 446–453.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H (2003) Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol, 31, 1007–1014.

    PubMed  CAS  Google Scholar 

  • Kohyama-Koganeya A, Sasamura T, Oshima E, Suzuki E, Nishihara S, Ueda R, Hirabayashi Y (2004) Drosophila glucosylceramide synthase: a negative regulator of cell death mediated by proapoptotic factors. J Biol. Chem, 279, 35995–36002.

    Article  PubMed  CAS  Google Scholar 

  • Kok JW, Babia T, Klappe K, Egea G, Hoekstra D (1998) Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated. Biochem J, 333, 779–786.

    PubMed  CAS  Google Scholar 

  • Kuge O, Dascher C, Orci L, Rowe T, Amherdt M, Plutner H, Ravazzola M, Tanigawa G, Rothman JE, Balch WE (1994) Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J Cell Biol, 125, 51–65.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai K, Yasuda S, Okemoto K, Nishijima M, Kobayashi S, Hanada K (2005) CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem, 280, 6488–6495.

    Article  PubMed  CAS  Google Scholar 

  • Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-Directional Protein Transport between the ER and Golgi. Annu Rev Cell Dev Biol, 20, 87–123.

    Article  PubMed  CAS  Google Scholar 

  • Levine T (2004) Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol, 14, 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and-independent components. Curr Biol, 12, 695–704.

    Article  PubMed  CAS  Google Scholar 

  • Loewen CJ, Roy A, Levine TP (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opilp binds VAP. EMBO J, 22, 2025–2035.

    Article  PubMed  CAS  Google Scholar 

  • Mandon EC, Ehses I, Rother J, van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem, 267, 11144–11148.

    PubMed  CAS  Google Scholar 

  • Merrill AH, Jr. (2002) De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway. J Biol Chem, 277, 25843–25846.

    Article  PubMed  CAS  Google Scholar 

  • Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE (2004) Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic, 5, 338–345.

    Article  PubMed  CAS  Google Scholar 

  • Munro S (2003) Cell biology: earthworms and lipid couriers. Nature, 426, 775–776.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Matsubara R, Kitagawa H, Kobayashi S, Kumagai K, Yasuda S, Hanada K (2003) Stereoselective synthesis and structure-activity relationship of novel ceramide trafficking inhibitors, (1R,3R)-N-(3-hydroxy-1-hydroxymethy1-3-phenylpropyl)dodecanamide (HPA-12) and its analogues. J Med Chem, 46, 3688–3695.

    Article  PubMed  CAS  Google Scholar 

  • Palmer KJ, Stephens DJ (2004) Biogenesis of ER-to-Golgi transport carriers: complex roles of COPII in ER export. Trends Cell Biol, 14, 57–61.

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Aravind L (1999) START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci, 24, 130–132.

    Article  PubMed  CAS  Google Scholar 

  • Raya A, Revert F, Navarro S, Saus J (1999) Characterization of a novel type of serine/threonine kinase that specifically phosphorylates the human goodpasture antigen. J Biol Chem, 214, 12642–12649.

    Article  Google Scholar 

  • Raya A, Revert-Ros F, Martinez-Martinez P, Navarro S, Rosello E, Vieites B, Granero F, Forteza J, Saus J (2000) Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis. J Biol Chem, 275, 40392–40399.

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff K, Kolter T (2003) Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci, 358, 847–861.

    Article  PubMed  CAS  Google Scholar 

  • Siess DC, Kozak SL, Kabat D (1996) Exceptional fusogenicity of Chinese hamster ovary cells with murine retroviruses suggests roles for cellular factor(s) and receptor clusters in the membrane fusion process. J Virol, 70, 3432–3439.

    PubMed  CAS  Google Scholar 

  • Simon CG, Jr., Holloway PW, Gear AR (1999) Exchange of C(16)-ceramide between phospholipid vesicles. Biochemistry, 38, 14676–14682.

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, De Rose RA, Farber SA (2004) Annexin 2-caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport. Proc Natl Acad Sci U S A, 101, 3450–3455.

    Article  PubMed  CAS  Google Scholar 

  • Uittenbogaard A, Ying Y, Smart EJ (1998) Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem, 273, 6525–6532.

    Article  PubMed  CAS  Google Scholar 

  • Vance JE (1991) Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem, 266, 89–97.

    PubMed  CAS  Google Scholar 

  • Viani P, Giussani P, Brioschi L, Bassi R, Anelli V, Tettamanti G, Riboni L (2003) Ceramide in Nitric Oxide Inhibition of Glioma Cell Growth. EVIDENCE FOR THE INVOLVEMENT OF CERAMIDE TRAFFIC. J Biol Chem, 278, 9592–9601.

    Article  PubMed  CAS  Google Scholar 

  • Voelker DR (1990) Characterization of phosphatidylserine synthesis and translocation in permeabilized animal cells. J Biol Chem, 265, 14340–14346.

    PubMed  CAS  Google Scholar 

  • Wang E, Norred WP, Bacon CW, Riley RT, Merrill AHJ (1991) Inhibition of sphingolipid biosynthesis by fumonisins: Implications for diseases associated with Fusarium moniliforme. J Biol Chem, 266, 14486–14490.

    PubMed  CAS  Google Scholar 

  • Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell, 114, 299–310.

    Article  PubMed  CAS  Google Scholar 

  • Weixel KM, Blumental-Perry A, Watkins SC, Aridor M, Weisz OA (2005) Distinct golgi populations of phosphatidylinositol 4-phosphate regulated by phosphatidylinositol 4-kinases. J Biol Chem, 280, 10501–10508.

    Article  PubMed  CAS  Google Scholar 

  • Wyles JP, McMaster CR, Ridgway ND (2002) Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. J Biol Chem, 277, 29908–29918.

    Article  PubMed  CAS  Google Scholar 

  • Yamaji A, Sekizawa Y, Emoto K, Sakuraba H, Inoue K, Kobayashi H, Umeda M (1998) Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem, 273, 5300–5306.

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T (2004) Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem, 279, 18688–18693.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda S, Kitagawa H, Ueno M, Ishitani H, Fukasawa M, Nishijima M, Kobayashi S, Hanada K (2001) A novel inhibitor of ceramide trafficking from the endoplasmic reticulum to the site of sphingomyelin synthesis. J Biol Chem, 276, 43994–44002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Hanada, K., Kawano, M., Kumagai, K. (2006). Molecular Mechanism of Ceramide Trafficking from the Endoplasmic Reticulum to the Golgi Apparatus in Mammalian Cells. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_8

Download citation

Publish with us

Policies and ethics