Skip to main content

Sphingolipids and Multidrug Resistance of Cancer Cells

  • Chapter
Sphingolipid Biology

Summary

Multidrug resistance is a dramatic complication that can impede cancer treatment. Some cancer cells can become resistant to a cytostatic agent, survive and develop resistance to most agents available for chemotherapy. As multi-drug resistance is linked to sphingolipid metabolism, manipulating sphingolipid metabolism might be a way to circumvent the sensitization of cancer cells to chemotherapy. Two strategies seem particularly promising. One is to drive sphingolipid metabolism towards the production of proapoptotic lipid ceramide, which leads to cell death, and away from sphingosine-1-phosphate and glucosylceramide, which stimulate proliferation. The other is to alter the expression or activity of multidrug efflux pumps that in many cases supply the molecular basis for multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Bacso Z, Nagy H, Goda K, Bene L, Fenyvesi F, et al. (2004) Raft and cytoskeleton associations of an ABC transporter: P-glycoprotein. Cytometry A, 61, 105–116.

    Article  PubMed  Google Scholar 

  • Boldin SA, Futerman AH (2000) Up-regulation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor. Evidence for post-translational modification of glucosylceramide synthase. J Biol Chem, 275, 9905–9909.

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Oude Elferink R (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem, 71, 537–592.

    Article  PubMed  CAS  Google Scholar 

  • Boujaoude LC, Bradshaw-Wilder C, Mao C, Cohn J, Ogretmen B, et al. (2001) Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem, 276, 35258–35264.

    Article  PubMed  CAS  Google Scholar 

  • Bucher K, Besse CA, Kamau SW, Wunderli-Allenspach H, Kramer SD (2005) Isolated rafts from adriamycin-resistant P388 cells contain functional ATPas-es and provide an easy test system for P-glycoprotein-related activities. Pharm Res, 22, 449–457.

    Article  PubMed  CAS  Google Scholar 

  • De Rosa MF, Sillence D, Ackerley C, Lingwood C (2004) Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis. J Biol Chem, 279, 7867–7876.

    Article  PubMed  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EM-BO Rep, 5,777–782.

    Google Scholar 

  • Ghetie MA, Marches R, Kufert S, Vitetta ES (2004) An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD19, causes P-gp to translocate out of lipid rafts, and chemosensitizes a multidrug-resistant (MDR) lymphoma cell line. Blood, 104, 178–183.

    Article  PubMed  CAS  Google Scholar 

  • Gouazé V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC (2005) Gluco-sylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res, 65,3861–3867.

    Article  PubMed  Google Scholar 

  • Gómez-Muñoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, et al. (2005) Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett, 579, 3744–3750.

    Article  PubMed  Google Scholar 

  • Higgins CT, Gottesman MM (1992) Is the multidrug transporter a flippase? Trends Biochem Sci, 17, 18–21.

    Article  PubMed  CAS  Google Scholar 

  • Huitema K, Van Den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. Embo J, 23, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Klappe K, Hinrichs JW, Kroesen BJ, Sietsma H, Kok JW (2004) MRP1 and glucosylceramide are coordinately over expressed and enriched in rafts during multidrug resistance acquisition in colon cancer cells. Int J Cancer, 110, 511–522.

    Article  PubMed  CAS  Google Scholar 

  • Kohyama-Koganeya A, Sasamura T, Oshima E, Suzuki E, Nishihara S, et al. (2004) Drosophila glucosylceramide synthase: a negative regulator of cell death mediated by proapoptotic factors. J Biol Chem, 279, 35995–36002.

    Article  PubMed  CAS  Google Scholar 

  • Lavie Y, Fiucci G, Liscovitch M (2001) Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv Drug Deliv Rev, 49, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Ling V (1975) Drug resistance and membrane alteration in mutants of mammalian cells. Can J Genet Cytol, 17, 503–515.

    PubMed  CAS  Google Scholar 

  • Norris-Cervetto E, Callaghan R, Platt FM, Dwek RA, Butters TD (2004) Inhibition of glucosylceramide synthase does not reverse drug resistance in cancer cells. J Biol Chem, 279, 40412–40418.

    Article  PubMed  CAS  Google Scholar 

  • Plo I, Lehne G, Beckstrom KJ, Maestre N, Bettaieb A, et al. (2002) Influence of ceramide metabolism on P-glycoprotein function in immature acute myeloid leukemia KG1a cells. Mol Pharmacol, 62, 304–312.

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Basso L, Appierto V, Villani MG, Valsecchi M, Loberto N, Prioni S, Chigorno V, Cavadini E, Formelli F, Sonnino S (2003) Altered sphingolipid metabolism in N-(4-hydroxyphenyl)-retinamide-resistant A2780 human ovarian carcinoma cells. J Biol Chem, 278, 5574–5583.

    Article  PubMed  CAS  Google Scholar 

  • Raggers RJ, van Helvoort A, Evers R, van Meer G (1999) The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci, 112, 415–422.

    PubMed  CAS  Google Scholar 

  • Reyes CL, Chang G (2005) Structure of the ABC transporter MsbA in complex with ADP.vanadate and lipopolysaccharide. Science, 308, 1028–1031.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MF, Callaghan R, Modok S, Higgins CF, Ford RC (2005) Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J Biol Chem, 280, 2857–2862.

    Article  PubMed  CAS  Google Scholar 

  • Seelig A, Blatter XL, Wohnsland F (2000) Substrate recognition by P-glycoprotein and the multidrug resistance-associated protein MRP1: a comparison. Int J Clin Pharmacol Ther, 38, 111–121.

    PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol, 4, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, et al. (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem, 68, 2541–2546.

    Article  PubMed  CAS  Google Scholar 

  • Uchida Y, Itoh M, Taguchi Y, Yamaoka S, Umehara H, Ichikawa S, Hirabayashi Y, Holleran WM, Okazaki T (2004) Ceramide reduction and transcriptional up-regulation of glucosylceramide synthase through doxorubicin-activated Sp1 in drug-resistant HL-60/ADR cells. Cancer Res, 64, 6271–6279.

    Article  PubMed  CAS  Google Scholar 

  • van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, et al. (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell, 87, 507–517.

    Article  PubMed  Google Scholar 

  • van Weely S, Brandsma M, Strijland A, Tager JM, Aerts JM (1993) Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim. Biophys Acta, 1181, 55–62.

    PubMed  Google Scholar 

  • Watanabe R, Wu K, Paul P, Marks DL, Kobayashi T, et al. (1998) Up-regulation of glucosylceramide synthase expression and activity during human keratinocyte differentiation. J Biol Chem, 273, 9651–9655.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

van Meer, G., Egmond, M., Halter, D. (2006). Sphingolipids and Multidrug Resistance of Cancer Cells. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_20

Download citation

Publish with us

Policies and ethics