Skip to main content

Ceramide 1-Phosphate

  • Chapter
Sphingolipid Biology

Summary

Over the past couple of decades, ceramide (Cer) has emerged as a lipid mediator of cell signaling in a variety of events, including apoptosis and cell differentiation, and its intracellular levels are tightly controlled. Several enzymes are known to be regulators of Cerlevels. One of these, ceramide kinase (CERK), catalyzes the conversion of ceramide (Cer) to ceramide 1-phosphate (C1P). Although the activity of this enzyme was reported in 1989, the CERK-gene was only recently identified. CERK, which is activated by Ca2+, possesses a typical diacylglycerol kinase catalytic domain, a pleckstrin homology domain, and a Ca2+/CaM binding domain. The groups that examined CERK/C1P functions suggested that CERK/C1P is involved in many processes including: membrane fusion, inflammation, DNA-synthesis, intracellular Ca2+ increase, and other processes. These CERK/C1P functions and the investigations over of the past decade that revealed them are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Acharya U, Patel S, Koundakjian E, Nagashima K, Han X and Acharya J.K. (2003) Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science, 299, 1740–1743.

    Article  PubMed  CAS  Google Scholar 

  • Bader MF, Doussau F, Chasserot-Golaz S, Vitale N and Gasman S (2004) Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochim Biophys Acta, 1742, 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Bajjalieh S, and Batchelor R (2000) Ceramide kinase. Methods Enzymol, 311, 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Bajjalieh SM, Martin TF and Floor E (1989) Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. J Biol Chem, 264, 14354–14360.

    PubMed  CAS  Google Scholar 

  • Baumruker T, Bornancin F and Billich A (2005) The role of sphingosine and ceramide kinases in inflammatory responses. Immunol Lett, 96, 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer AW, Campbell BJ and Forrester LJ (1985) Comparative toxinology of Loxosceles reclusa and Corynebacterium pseudotuberculosis. Science, 228, 590.

    Article  PubMed  CAS  Google Scholar 

  • Bornancin F, Mechtcheriakova D., Stora S, Graf C, Wlachos A, Devay P, Urtz N, Baumruker T, and Billich A (2005) Characterization of a ceramide kinase-like protein. Biochim Biophys Acta, 1687, 31–43.

    PubMed  CAS  Google Scholar 

  • Boudker O. and Futerman AH (1993) Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane. J Biol Chem, 268, 22150–22155.

    PubMed  CAS  Google Scholar 

  • Brindley DN, Xu J, Jasinska R and Waggoner DW (2000) Analysis of ceramide 1-phosphate and sphingosine-1-phosphate phosphatase activities. Methods Enzymol, 311, 233–244.

    PubMed  CAS  Google Scholar 

  • Carré A, Graf C, Stora S, Mechtcheriakova D, Csonga R, Urtz N, Billich A, Baumruker T and Bornancin F (2004) Ceramide kinase targeting and activity determined by its N-terminal pleckstrin homology domain. Biochem Biophys Res Commun, 324, 1215–1219.

    Article  PubMed  CAS  Google Scholar 

  • Dressier KA and Kolesnick RN (1990) Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. Synthesis via ceramide from sphingomyelin. J Biol Chem, 265, 14917–14921.

    Google Scholar 

  • aGómez-Muñoz A (2004) Ceramide-1-phosphate: a novel regulator of cell activation. FEBS Lett, 562, 5–10.

    Article  PubMed  CAS  Google Scholar 

  • bGómez-Muñoz A, Kong JY, Salh B and Steinbrecher UP (2004) Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomye-linase in macrophage. J Lipid Res, 45, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Muñoz A, Martin A, O’Brien L and Brindley DN (1994) Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J Biol Chem, 269, 8937–8943.

    PubMed  Google Scholar 

  • Hinkovska-Galcheva V, Boxer LA, Kindzelskii A, Hiraoka M, Abe A, Goparju S, Spiegel S, Petty HR and Shayman JA (2005) Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem, 280, 26612–26621.

    Article  PubMed  CAS  Google Scholar 

  • Hinkovska-Galcheva VT, Boxer LA, Mansfield PJ, Harsh D, Blackwood A, and Shayman JA (1998) The formation of ceramide-1-phosphate during neutrophil phagocytosis and its role in liposome fusion. J Biol Chem, 273, 33203–33209.

    Article  PubMed  CAS  Google Scholar 

  • Hinkovska-Galcheva VT, Boxer LA, Kindzelskii A, Hiraoka M, Abe A, Goparju S, Spiegel S, Petty HR and Shayman JA (2005) Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem, 280, 26612–26621.

    Article  PubMed  CAS  Google Scholar 

  • Hogback SLP, Rudnas B, Bjorklund S, Slotte JP, and Tornquist K (2003) Ceramide 1-phosphate increases intracellular free calcium concentrations in thyroid FRTL-5 cells: evidence for an effect mediated by inositol 1,4,5-trisphosphate and intracellular sphingosine 1-phosphate. Biochem J, 370, 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Huwiler A, Fabbro D and Pfeilschifter J (1998) Selective ceramide binding to protein kinase C-alpha and-delta isoenzymes in renal mesangial cells. Biochemistry, 37, 14556–14562.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y (1997) Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. J Biochem (Tokyo), 122, 1080–1087.

    CAS  Google Scholar 

  • Kai M, Wada I, Imai S, Sakane F and Kanoh H (1997) Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phospha-tase. J Biol Chem, 272, 24572–24578.

    Article  PubMed  CAS  Google Scholar 

  • Kim TJ, Mitsutake S, Kato M and Igarashi Y (2005) The leucine 10 residue in pleckstrin homology domain of ceramide kinase is crucial for its catalytic activity. FEBS lett in press

    Google Scholar 

  • Kolesnick RN and Hemer MR (1990) Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem, 265, 18803–18808.

    PubMed  CAS  Google Scholar 

  • Kondo T, Kitano T, Iwai K, Watanabe M, Taguchi Y, Yabu T, Umehara H, Domae N, Uchiyama T and Okazaki T (2002) Control of ceramide-induced apoptosis by IGF-1: involvement of PI-3 kinase, caspase-3 and catalase. Cell Death Differ, 9, 682–692.

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM and Schlessinger J (1996) PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell, 85, 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Yao N, Song JT, Luo S, Lu H and Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev, 17, 2636–2641.

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Han HY, Giuliano AE, and Cabot MC (2001) Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J, 15, 719–730.

    Article  PubMed  CAS  Google Scholar 

  • Mitsutake S, Kim TJ, Inagaki Y, Kato M, Yamashita T, and Igarashi Y (2004) Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J Biol Chem, 279, 17570–17577.

    Article  PubMed  CAS  Google Scholar 

  • Mitsutake S, Tani M, Okino N, Mori K, Ichinose S, Omori A, Iida H, Nakamura T and Ito M (2001) Purification, characterization, molecular cloning, and subcellular distribution of neutral ceramidase of rat kidney. J Biol Chem, 276, 26249–26259.

    Article  PubMed  CAS  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA and Hannun YA (1993) Programmed cell death induced by ceramide. Science, 259, 1769–1771.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Bell RM and Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem, 264, 19076–19080.

    PubMed  CAS  Google Scholar 

  • Perry DK and Hannun YA (1998) The role of ceramide in cell signaling. Biochim Biophys Acta, 1436, 233–243.

    PubMed  CAS  Google Scholar 

  • Pettus BJ, Bielawska A, Spiegel S, Roddy P, Hannun YA, and Chalfant CE. ( 2003) Ceramide kinase mediates cytokine-and calcium ionophore-induced arachidonic acid release. J Biol Chem, 278, 38206–38213.

    Article  PubMed  CAS  Google Scholar 

  • Pettus BJ, Bielawska A., Subramanian P, Wijesinghe DS, Maceyka M, Leslie CC, Evans JH, Freiberg J, Roddy P, Hannun YA, and Chalfant CE. (2004) Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem, 279, 11320–11326.

    Article  PubMed  CAS  Google Scholar 

  • Renault AD, Starz-Gaiano M and Lehmann R (2002) Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: a genome wide analysis of gene expression in Drosophila. Gene Expression Patterns, 2, 337–345.

    Article  PubMed  CAS  Google Scholar 

  • Riboni L, Bassi R, Anelli V and Viani P. (2002) Metabolic formation of ceramide-1-phosphate in cerebellar granule cells: evidence for the phosphorylation of ceramide by different metabolic pathways. Neurochem Res, 27, 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Rile G, Yatomi Y, Takafuta T and Ozaki Y (2003) Ceramide 1-phosphate formation in neutrophils. Acta Haematol, 109, 76–83.

    Article  PubMed  CAS  Google Scholar 

  • Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJ, Acharya U, Acharya JK and Broadie K (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci, 24, 7789–7803.

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Deeb R and Shisheva A (2002) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem, 277, 47276–47284.

    Article  PubMed  CAS  Google Scholar 

  • Shinghal R, Scheller RH and Bajjalieh SM (1993) Ceramide 1-phosphate phosphatase activity in brain. J Neurochem, 61, 2279–2285.

    Article  PubMed  CAS  Google Scholar 

  • Songer JG, Libby SJ, Iandolo JJ and Cuevas WA (1990) Cloning and expression of the phospholipase D gene from Corynebacterium pseudotuberculosis in Escherichia coli. Infect Immun, 58, 131–136.

    PubMed  CAS  Google Scholar 

  • Spiegel S and Merrill AH (1996) Sphingolipid metabolism and cell growth regulation. FASEB J, 10, 1388–1397.

    PubMed  CAS  Google Scholar 

  • Subramanian P, Stahelin RV, Szulc Z, Bielawska A, Cho W, and Chalfant CE. (2005) Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2alpha and enhances the interaction of the enzyme with phosphatidylcholine. J Biol Chem, 280, 17601–17607.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M, Kono K, Liu H, Shimizugawa T, Minekura H, Spiegel S, and Kohama T (2002) Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J Biol Chem, 277, 23294–23300.

    Article  PubMed  CAS  Google Scholar 

  • Tornquist K, Blom T., Shariatmadari R, and Pasternack M (2004) Ceramide 1-phosphate enhances calcium entry through voltage-operated calcium channels by a protein kinase C-dependent mechanism in GH4C1 rat pituitary cells. Biochem J, 380, 661–668.

    Article  PubMed  Google Scholar 

  • Tuson M, Marfany G and Gonzalez-Duarte R (2004) Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet, 74, 128–138.

    Article  PubMed  CAS  Google Scholar 

  • Zhang QX, Pilquil CS, Dewald J, Berthiaume LG and Brindley DN (2000) Identification of structurally important domains of lipid phosphate phosphatase-1: implications for its sites of action. Biochem J, 345, 181–184.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Mitsutake, S., Kim, TJ., Igarashi, Y. (2006). Ceramide 1-Phosphate. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_15

Download citation

Publish with us

Policies and ethics