Skip to main content

A Behaviour Network Concept for Controlling Walking Machines

  • Chapter
Adaptive Motion of Animals and Machines

Abstract

The high complexity of the mechanical system and the difficult task of walking itself makes the task of designing the control for legged robots a diffcult one. Even if the implementation of parts of the desired functionality, like posture control or basic swing/stance movement, can be solved by the usage of classical engeneering approaches, the control of the overall system tends to be very unflexible. This paper introduces a new method to combine apects of classical robot control and behaviour based control. Inspired by the activation patterns in the brain and the spinal cord of animals we propose a behaviour network architecture using special signals like activity or target rating to influencce and coordinate the behaviours. The general concept of a single behaviour as well as their interaction within the network is described. This architecture is tested on the four-legged walking machine BISAM and experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albiez, J., Ilg, W., Luksch, T., Berns, K., and Dillmann, R. (2001). Learning reactive posture control on the four-legged walking machine bisam. In International Conference on Intelligent Robots and Systems (IROS), Hawaii, USA.

    Google Scholar 

  2. Albiez, J., Luksch, T., Berns, K., and Dillmann, R. (2002a). An activation based behaviour control architecture for walking machines. In Proceedings of the 7th International Conference on Simulation of Adaptive Behaviour SAB, Edingburgh, UK.

    Google Scholar 

  3. Albiez, J., Luksch, T., Ilg, W., Berns, K., and Dillmann, R. (2002c). Reactive reflex based control for a four-legged walking machine. In Proceedings of the 7th International Conference on Inteligent Autonomous Systems IAS, Los Angeles, California, USA.

    Google Scholar 

  4. Arkin, R. (2000). Behavior-Based Robotics. MIT Press.

    Google Scholar 

  5. Arkin, R., Kahled, A., Weitzenfeld, A., and Cervantes-Prez, F. (2000). Behavioral models of the praying mantis as a basis for robotic behavior. Journal of Autonomous Systems.

    Google Scholar 

  6. Ayers, J., Witting, J., Olcott, C., McGruer, N., and Massa, D. (2000a). Lobster robots. In Wu, T. and Kato, N., (Eds.), Proceedings of the International Symposium on Aqua Biomechanisms.

    Google Scholar 

  7. Ayers, J., Witting, J., Wilbur, C., Zavracky, P., McGruer, N., and Massa, D. (2000b). Biomimetic robots for shallow water mine countermeasures. In Proc. of the Autonomous Vehicles in Mine Countermeasures Symposium.

    Google Scholar 

  8. Berns, K., Ilg, W., Deck, M., Albiez, J., and Dillmann, R. (1999). Mechanical construction and computer architecture of the four-legged walking machine BISAM. IEEE Transactions on Mechatronics, 4(1):1–7.

    Article  Google Scholar 

  9. Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2(1):14–23.

    Google Scholar 

  10. Buehler, M., Cocosco, A., Yamazaki, K., and Battaglia, R. (1999). Stable open loop walking in quadruped robots with stick legs. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 2348–2354, Detroit.

    Google Scholar 

  11. Cruse, H., Dürr, V., and Schmitz, J. (2001). Control of a hexapod walking-a decentralized solution based on biological data. In Proc. of the 4th International Conference on Climbing and Walking Robots (CLAWAR), Karlsruhe, Germany.

    Google Scholar 

  12. Dürr, V. and Krause, A. (2001). The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection. In Proc. of the 4th International Conference on Climbing and Walking Robots (CLAWAR).

    Google Scholar 

  13. Endo, Y. and Arkin, R. (2001). Implementing tolman’s schematic sowbug: Behaviour-based robotics in the 1930’s. In Proceedings of the 2001 IEEE International Conference on Robotics and Autonomous Systems.

    Google Scholar 

  14. Espenschied, K., Quinn, R., Chiel, H., and Beer, R. (1996). Biologically-based distributed control and local reflexes to improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems, 18:59–64.

    Article  Google Scholar 

  15. Ferrell, C. (1995). Global behavior via cooperative local control. volume 2, pages 105–125.

    Google Scholar 

  16. Gienger, M., Löffler, K., and Pfeiffer, F. (2001). In Proc. of the IEEE International Conference on Robotics and Automation (ICRA).

    Google Scholar 

  17. Hosoda, K., Miyashita, T., and Asada, M. (2000). Emergence of quadruped walk by a combination of reflexes. In Procceedings of the International Symposium on adaptive Motion of Animals and Machines, Montreal.

    Google Scholar 

  18. Ilg, W., Albiez, J., and Jedele, H. (1998a). A biologically inspired adaptive control architecture based on neural networks for a four-legged walking machine. In Proceedings of the 8th International Conference on Artificial Neural Networks, pages 455–460, Skoevde.

    Google Scholar 

  19. Ilg, W., Berns, K., Jedele, H., Albiez, J., Dillmann, R., Fischer, M., Witte, H., Biltzinger, J., Lehmann, R., and Schilling, N. (1998b). Bisam: From small mammals to a four legged walking machine. In Proceedings of the Fifth International Conference on Simulation of Adaptive Behaviour, pages 400–407, Zurich.

    Google Scholar 

  20. Kandel, E., Schwartz, J., and Jessell, T. M. (2000). Principles of Neural Science. McGraw-Hill, 4th ed. edition.

    Google Scholar 

  21. Kimura, H. and Fukuoka, Y. (2000). Biologically inspired dynamic walking on irregular terrain-adaptation at spinal cord and brain stem. In International Symposium on Adaptive Motion of Animals and Machines, Montreal.

    Google Scholar 

  22. Kimura, H., Fukuoka, Y., Hada, Y., and Takase, K. (2001). Three-dimensional adpative dynamic walking of a quadruped robot by using neural system model. In Proc. of the 4th International Conference on Climbing and Walking Robots (CLAWAR), Karlsruhe. FZI.

    Google Scholar 

  23. Kimura, H., Shimoyama, I., and Miura, H. (1990). Dynamics in the dynamic walk of a quadruped robot. Advanced Robotics, 4(3):283–301.

    Google Scholar 

  24. Löffler, K., Gienger, M., and Pfeiffer, F. (2001). Simulation and control of a biped jogging robot. In Proceedings of the 4th International Conference on Climbing and Walking Robots (CLAWAR).

    Google Scholar 

  25. Likhachev, M. and Arkin, R. (2000). Robotic comfort zones. In Proceedings of the SPIE: Sensor Fusion and Decentralized Control in Robotic Systems, volume 4196, pages 27–41.

    Google Scholar 

  26. Likhachev, M. and Arkin, R. (2001). Spatio-temporal case-based reasoning for behavioral selection. In Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), pages 1627–1634.

    Google Scholar 

  27. Mataric, M. J. (1997). Behavior-based control: Examples from navigation, learning, and group behavior. Journal of Experimental and Theoretical Artificial Intelligence, Special issue on Software Architectures for Physical Agents, 9(2–3):323–336.

    Article  Google Scholar 

  28. Matsumoto, O., Ilg, W., Berns, K., and Dillmann, R. (2000). Dynamical stable control of the four-legged walking machine bisam in trot motion using force sensors. In Intelligent Autonomous Systems 6.

    Google Scholar 

  29. Pearson, K. (1995). Proprioceptive regulation of locomotion. Current Opinions in Neurobiology, 5(6):768–791.

    Article  Google Scholar 

  30. Pirajanian, P. (1999). Behaviour coordination mechanisms-state-of-the-art. Technical Report IRIS-99-375, Institute for Robotics and Intelligent Systems, School of Engineering, University of Southern California.

    Google Scholar 

  31. Raibert, M. H. (1986). Legged Robots That Balance. MIT Press, Cambridge, MA.

    Google Scholar 

  32. Vukobratovic, M., Borovac, B., Surla, D., and Stokic, D. (1990). Biped Locomotion. Springer-Verlag, Heidelberg, Berlin, New York.

    Google Scholar 

  33. Witte, H., Hackert, R., Fischer, M. S., Ilg, W., Albiez, J., Dillmann, R., and Seyfarth, A. (2001a). Design criteria for the leg of a walking machine derived by biological inspiration from quadruped mammals. In Proc. of the 4th International Conference on Climbing and Walking Robots (CLAWAR), Karlsruhe, Germany.

    Google Scholar 

  34. Witte, H., Hackert, R., Lilje, K., Schilling, N., Voges, D., Klauer, G., Ilg, W., Albiez, J., Seyfarth, A., Germann, D., Hiller, M., Dillmann, R., and Fischer, M. (2001b). Transfer of biological priciples into the construction of quadruped walking machines. In Second International Workshop On Robot Motion And Control, Bukowy Dworek, Poland.

    Google Scholar 

  35. Yoneda, K. and Hirose, S. (1992). Dynamic and Static Fusion Gait of a Quadruped Walking Vehicle on a Winding Path. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 143–148, Nizza.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Albiez, J., Luksch, T., Berns, K., Dillmann, R. (2006). A Behaviour Network Concept for Controlling Walking Machines. In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds) Adaptive Motion of Animals and Machines. Springer, Tokyo. https://doi.org/10.1007/4-431-31381-8_21

Download citation

  • DOI: https://doi.org/10.1007/4-431-31381-8_21

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24164-5

  • Online ISBN: 978-4-431-31381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics