Skip to main content

Neuroanatomical Considerations

  • Chapter
Evoked Spinal Cord Potentials
  • 992 Accesses

Abstract

The central nervous system includes the spinal cord and the brain. The spinal cord is an elongated, roughly cylindrical structure that is found within the vertebral canal (Fig. 1.1A,C). It joins the medulla oblongata at the level of the foramen magnum of the skull (Fig. 1.1A), and in adults it terminates caudally at the interspace between the first and second lumbar vertebrae (Fig. 1.1C). The spinal cord of the adult human is about 42–45cm long and 1cm in diameter at its widest extent, and it weighs about 35g (Nolte, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section A: Chapter 1

  • Al-Chaer ED, Lawand NB, Westlund KN, Willis WD. Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J Neurophysiol 1996a;76:2661–74.

    PubMed  CAS  Google Scholar 

  • Al-Chaer ED, Lawand NB, Westlund KN, Willis WD. Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. J Neurophysiol 1996b;76:2675–90.

    PubMed  CAS  Google Scholar 

  • Al-Chaer ED, Westlund KN, Willis WD. Nucleus gracilis: an integrator for visceral and somatic information. J Neurophysiol 1997;78:521–7.

    PubMed  CAS  Google Scholar 

  • Al-Chaer ED, Feng Y, Willis WD. Comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. J Neurophysiol 1999;82:1876–82.

    PubMed  CAS  Google Scholar 

  • Angaut-Petit D. The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat’s fasciculus gracilis. Exp Brain Res 1975;22:471–93.

    PubMed  CAS  Google Scholar 

  • Apkarian AV, Hodge CJ. Primate spinothalamic pathways. III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 1989;288:493–511.

    Article  PubMed  CAS  Google Scholar 

  • Apkarian AV, Shi T. Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 1994;14:6779–95.

    PubMed  CAS  Google Scholar 

  • Berne RM, Levy MN. Principles of physiology. 3rd ed. St. Louis: Mosby; 2000.

    Google Scholar 

  • Bernard JF, Besson JM. The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 1990;63:473–90.

    PubMed  CAS  Google Scholar 

  • Boivie J. An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 1979;186:343–70.

    Article  PubMed  CAS  Google Scholar 

  • Brown AG. Cutaneous afferent fibre collaterals in the dorsal columns of the cat. Exp Brain Res 1968;5:293–305.

    Article  PubMed  CAS  Google Scholar 

  • Brown AG. Organization of the spinal cord: the anatomy and physiology of identified neurones. Berlin: Springer; 1981.

    Google Scholar 

  • Brown PB, Fuchs JL. Somatotopic representation of hindlimb skin in cat dorsal horn. J Neurophysiol 1975;38:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Burgess PR, Clark FJ. Dorsal column projection of fibres from the cat knee joint. J Physiol 1969;203:301–15.

    PubMed  CAS  Google Scholar 

  • Burstein R, Giesler GJ. Retrograde labeling of neurons in spinal cord that project directly to nucleus accumbens or the septal nuclei in the rat. Brain Res 1989;497:149–54.

    Article  PubMed  CAS  Google Scholar 

  • Burstein R, Potrebic S. Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat. J Comp Neurol 1993;335:469–85.

    Article  PubMed  CAS  Google Scholar 

  • Burstein R, Cliffer KD, Giesler GJ. Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J Neurosci 1987;7:4159–64.

    PubMed  CAS  Google Scholar 

  • Burstein R, Cliffer KD, Giesler GJ. Cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 1990;291:329–44.

    Article  PubMed  CAS  Google Scholar 

  • Carlton SM, Westlund KN, Zhang D, Sorkin LS, Willis WD. Calcitonin gene-related peptide containing primary afferents synapse on primate spinothalamic tract cells. Neurosci Lett 1990;109:76–81.

    Article  PubMed  CAS  Google Scholar 

  • Carlton SM, Westlund KN, Zhang D, Willis WD. GABA-immunoreactive terminals synapse on primate spinothalamic tract cells. J Comp, Neurol 1992;322:528–37.

    Article  CAS  Google Scholar 

  • Carpenter MB, Sutin J. Human neuroanatomy. 8th ed. Baltimore: Williams and Wilkins; 1983.

    Google Scholar 

  • Cliffer KD, Burstein R, Giesler GJ. Distributions of spinothalamic, spinohypothalamic and spinotelencephalic fibers revealed by anterograde tracing of PHA-L in rats. J Neurosci 1991;11:852–68.

    PubMed  CAS  Google Scholar 

  • Cliffer KD, Hasegawa T, Willis WD. Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: Basic characterization and antidromic activation from the thalamus. J Neurophysiol 1992;68:818–32.

    PubMed  CAS  Google Scholar 

  • Coulter JD, Jones EG. Differential distribution of cortico-spinal projections from individual cytoarchitectonic fields in the monkey. Brain Res 1977;129:335–40.

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt OD. Cortex cerebri: performance, structural and functional organization of the cortex. Oxford: Oxford University Press; 1995.

    Google Scholar 

  • Crosby EC, Humphrey T, Lauer EW. Correlative anatomy of the nervous system. New York: MacMillan; 1962.

    Google Scholar 

  • De Groat WC. Anatomy of the central neural pathways controlling the lower urinary tract. Eur Urol 1998;34(Suppl 1):2–5.

    Article  PubMed  Google Scholar 

  • Ferrington DG, Downie JW, Willis WD. Primate nucleus gracilis neurons: Responses to innocuous and noxious stimuli. J Neurophysiol 1988;59:886–907.

    PubMed  CAS  Google Scholar 

  • Gingold SI, Greenspan JD, Apkarian AV. Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol 1991;308:467–90.

    Article  PubMed  CAS  Google Scholar 

  • Grant G, Boivie J, Silfvenius H. Course and termination of fibres from the nucleus z of the medulla oblongata. An experimental light microscopical study in the cat. Brain Res 1973;55:55–70.

    Article  PubMed  CAS  Google Scholar 

  • Guan Y, Guo W, Zou SP, Dubner R, Ren K. Inflammation-induced upregulation of AMPA receptor subunit expression in brain stem pain modulatory circuitry. Pain 2003;104:401–13.

    Article  PubMed  CAS  Google Scholar 

  • Haber LH, Martin RF, Chatt AB, Willis WD. Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res 1978;153:163–8.

    Article  PubMed  CAS  Google Scholar 

  • Hirshberg RM, Al-Chaer ED, Lawand NB, Westlund KN, Willis WD. Is there a pathway in the posterior funiculus that signals visceral pain? Pain 1996;67:291–305.

    Article  PubMed  CAS  Google Scholar 

  • Holstege G. The somatic motor system. In: Holstege G, Bandler R, Saper CB, editors. The emotional motor system. Progress in brain research vol. 107. Amsterdam: Elsevier; 1996. p. 9–26.

    Google Scholar 

  • Hylden JLK, Hayashi H, Bennett GJ, Dubner R. Spinal lamina I neurons projecting to the parabrachial area in the cat midbrain. Brain Res 1985;336:195–8.

    Article  PubMed  CAS  Google Scholar 

  • Jones EG. The thalamus. New York: Plenum; 1985.

    Google Scholar 

  • Kevetter GA, Willis WD. Spinothalamic cells in the rat lumbar cord with collaterals to the medullary reticular formation. Brain Res 1982;238:181–5.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers HGJM. Anatomy of the descending pathways. In: Brooks VB, editor. Handbook of physiology. Section 1. The nervous system. vol. 2, Motor control, Part 1. Bethesda: American Physiological Society; 1981; pp. 597–666.

    Google Scholar 

  • Light AR, Perl ER. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 1979;186:133–50.

    Article  PubMed  CAS  Google Scholar 

  • Lissauer H. Beitrag zum Faserverkauf im Hinterhorn des menschlichen Ruckenmark und zum Verhalten desselben bei Tabes dorsalis. Arch Psychiat Nervenkrankh 1886;17:377–438.

    Article  Google Scholar 

  • Mehler WR. The anatomy of the so-called “pain tract” in man: an analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In: French JD, Porter RW, editors. Basic research in paraplegia. Springfield: Charles C. Thomas; 1962. p. 26–55.

    Google Scholar 

  • Mehler WR, Feferman ME, Nauta WJH. Ascending axon degeneration following anterolatreral cordotomy. An experimental study in the monkey. Brain 1960;83:718–51.

    Article  PubMed  CAS  Google Scholar 

  • Mettler FA. Neuroanatomy. St. Louis: Mosby; 1948.

    Google Scholar 

  • Nadelhaft I, Roppolo J, Morgan C, DeGroat WC. Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J Comp Neurol 1983;216:36–52.

    Article  PubMed  CAS  Google Scholar 

  • Nagy GG, Al-Ayyan M, Andrew D, Fukaya M, Watanabe M, Todd AJ. Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen-unmasking method. J Neurosci 2004;24:5766–77.

    Article  PubMed  CAS  Google Scholar 

  • Nauta HJW, Soukup VM, Fabian RH, Lin JT, Grady JJ, Williams CGA, Campbell GA, Westlund KN, Willis WD. Punctate mid-line myelotomy for the relief of visceral cancer pain. J Neurosurg (Spine 1) 2000;92:125–30.

    Article  CAS  Google Scholar 

  • Nolte J. The human brain. An introduction to its functional anatomy. 5th ed. St. Louis: Mosby; 2002.

    Google Scholar 

  • Oguro K, Kobayashi J, Aiba H, Kobayashi S, Hojo H. Electrographic study of brainstem reflex myoclonus. Electromyogr Clin Neurophysiol 1997;37:99–106.

    PubMed  CAS  Google Scholar 

  • Patterson JT, Head PA, McNeill DL, Chumg K, Coggeshall RE. Ascending unmyelinated primary afferent fibers in the dorsal funiculus. J Comp Neurol 1989;290:384–90.

    Article  PubMed  CAS  Google Scholar 

  • Patterson JT, Coggeshall RE, Lee WT, Chung K. Long ascending unmyelinated afferent axons in the rat dorsal column: Immunohistochemical localizations. Neurosci Lett 1990;108:6–10.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Mai JK. The human nervous system. Amsterdam: Elsevier; 2004.

    Google Scholar 

  • Petit D, Burgess PR. Dorsal column projection of receptors in cat hairy skin supplied by myelinated fibers. J Neurophysiol 1968;31:849–55.

    PubMed  CAS  Google Scholar 

  • Phillips CG, Porter R. Corticospinal neurons: their role in movement. New York: Academic Press; 1977.

    Google Scholar 

  • Pompeiano O, Brodal A. Spino-vestibular fibers in the cat. An experimental study. J Comp Neurol 1957;108:353–82.

    Article  PubMed  CAS  Google Scholar 

  • Rexed B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 1952;96:415–66.

    Article  Google Scholar 

  • Rexed B. A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 1954;100:297–380.

    Article  PubMed  CAS  Google Scholar 

  • Romanes GJ. Cunningham’s textbook of anatomy. 12th ed. Oxford: Oxford University Press; 1981.

    Google Scholar 

  • Sadjapour K, Brodal A. The vestibular nuclei in man: A morphological study in the light of experimental findings in the cat. J Hirnforsch 1968;10:299–319.

    Google Scholar 

  • Schaible HG, Neugebauer V, Cervero F, Schmidt RF. Changes in tonic descending inhibition of spinal neurons with articular input during the development of acute arthritis in the cat. J Neurophysiol 1991;66:1021–32.

    PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB. Terminal axon patterns in cat spinal cord. II. The dorsal horn. Brain Res 1968;9:32–58.

    Article  PubMed  CAS  Google Scholar 

  • Schoenen J, Faull RL. Spinal cord; cyto-and chemoarchitecture. In: Paxinos G, Mai JK, editors. The human nervous system. 2nd ed. Amsterdam: Elsevier; 2004. p. 190–232.

    Google Scholar 

  • Spike RC, Puskar Z, Andrew D, Todd AJ. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 2003;18:2433–48.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura Y, Lee CL, Perl ER. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 1986;234:358–61.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura Y, Terui N, Hosoya Y. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol 1989;62:834–40.

    PubMed  CAS  Google Scholar 

  • Sun H, Ren K, Zhing CM, Ossipov MH, Malan TP, Lai J, Porreca F. Nerve injury-induced tactile allodynia is mediated via ascending spinal dorsal column projections. Pain 2001;90:105–11.

    Article  PubMed  CAS  Google Scholar 

  • Todd AJ. Anatomy of primary afferents and projection neurons in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp Physiol 2002;87:245–9.

    Article  PubMed  CAS  Google Scholar 

  • Uddenberg N. Functional organization of long, second-order afferents in the dorsal funiculus. Exp Brain Res 1968;4:377–82.

    PubMed  CAS  Google Scholar 

  • Wei F, Dubner R, Ren K. Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation. Pain 1999;80:127–41.

    Article  PubMed  CAS  Google Scholar 

  • Westlund KN, Carlton SM, Zhang D, Willis WD. Glutamate-immunoreactive terminals synapse on primate spinothalamic tract cells. J Comp Neurol 1992;322:519–27.

    Article  PubMed  CAS  Google Scholar 

  • Whitsel BL, Petrucelli LM, Sapiro G. Modality representation in the lumbar and cervical fasciculus gracilis of squirrel monkeys. Brain Res 1969;15:67–78.

    Article  PubMed  CAS  Google Scholar 

  • Wiberg M, Westman J, Blomqvist A. Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 1987;264:92–117.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD. Long-term potentiation in spinothalamic neurons. Brain Res Rev 2002; 40:202–14.

    Article  PubMed  Google Scholar 

  • Willis WD. Thalamo-cortical system of nociception in animals. In: Chen J, Chen ACN, Han JS, Willis WD, editors. Experimental pathological pain: from molecules to brain functions. Beijing: Science Press; 2003. p. 165–96.

    Google Scholar 

  • Willis WD. Physiology and anatomy of the spinal cord pain system. Merskey H, Loeser JD, Dubner R, editors. Paths of Pain. Seattle: IASP Press; 2005. p. 85–100.

    Google Scholar 

  • Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. 3rd ed. New York: Kluwer Academic/Plenum Publishers; 2004.

    Google Scholar 

  • Willis WD, Grossman RG. Medical neurobiology, 3rd ed. St. Louis: The C.V. Mosby Company; 1981.

    Google Scholar 

  • Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 1997;14;2–31.

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Melville Jones G. Mammalian vestibular physiology. New York: Plenum; 1979.

    Google Scholar 

  • Ye Z, Westlund KN. Ultrastructural localization of glutamate receptors subunits (NMDAR1, AMPA GluR1 and GluR2/3) and spinothalamic tract cells. NeuroReport 1996;7:2581–5.

    Article  PubMed  CAS  Google Scholar 

  • Ye Z, Wimalawansa SJ, Westlund KN. Receptor for calcitonin gene-related peptide: localization in the dorsal and ventral spinal cord. Neuroscience 1999;92:1389–97.

    Article  PubMed  CAS  Google Scholar 

  • Yezierski RP, Gerhart KD, Schrock BJ, Willis WD. A further examination of effects of cortical stimulation in primate spinothalamic tract cells. J Neurophysiol 1983;49:424–41.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Willis, W.D. (2006). Neuroanatomical Considerations. In: Shimoji, K., Willis, W.D. (eds) Evoked Spinal Cord Potentials. Springer, Tokyo. https://doi.org/10.1007/4-431-30901-2_1

Download citation

  • DOI: https://doi.org/10.1007/4-431-30901-2_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24026-6

  • Online ISBN: 978-4-431-30901-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics