Skip to main content

Summary

Pluripotent embryonic stem (ES) cells are potent materials for both regenerative therapeutic approaches and developmental research. Recently, a novel ES cell differentiation system combined with 2-dimensional culture and flowcytometry assisted cell sorting (FACS) has been developed. In this system, cells in the cardiovascular system, that is, endothelial, mural, blood cells and cardiomyocytes can be systematically induced from common progenitor Flk1 (vascular endothelial growth factor receptor-2)-expressing cells. This system can constructively reproduce various stages of cardiovascular development in vitro, such as cell differentiation, diversification, and higher structure formation, providing novel possibilities to elucidate the cellular and molecular mechanisms of cardiovascular development. Cardiovascular cell induction from primate ES cells reveals primate-specific developmental mechanisms. ES cells will also contribute to regenerative medicine not only as a cellular source for transplantation but also for discovery of novel genes and drugs for regeneration. In this review, the significance of ES cell study in basic science and clinical medicine of cardiovascular field is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Darland DC, D’Amore P (1999) Blood vessel maturation: vascular development comes of age. J. Clin. Invest. 103:157–158

    Article  PubMed  CAS  Google Scholar 

  • DeRuiter MC, Poelmann RE, VanMunsteren JC, et al. (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actions in vivo and in vitro. Circ. Res. 80:444–451.

    PubMed  CAS  Google Scholar 

  • Ema M, Faloon P, Zhang WJ, et al.(2003) Combinatorial effects of Flk1 and Tall on vascular and hematopoietic development in the mouse. Genes Dev. 17:380–393.

    Article  PubMed  CAS  Google Scholar 

  • Feraud O, Cao Y, Vittet D (2001) Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis. Lab. Invest. 81:1669–1681.

    PubMed  CAS  Google Scholar 

  • Gerecht-Nir S, Ziskind A, Cohen S (2003) Itskovitz-Eldor J. Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab. Invest. 83:1811–1820.

    Article  PubMed  Google Scholar 

  • Hellstrom M, Kalin M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-· in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 126:3047–3055.

    PubMed  CAS  Google Scholar 

  • Hidaka K, Lee JK, Kim HS, Ihm CH, Lio A, Ogawa M, Nishikawa SI, Kodama I, Morisaki T (2003) Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 17:740–742.

    PubMed  CAS  Google Scholar 

  • Hirashima M, Kataoka H, Nishikawa S, et al. (1999) Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood. 93:1253–1263.

    PubMed  CAS  Google Scholar 

  • Hirashima M, Ogawa M, Nishikawa S, et al.(2003) A chemically defined culture of VEGFR2+ cells derived from embryonic stem cells reveals the role of VEGFR1 in tuning the threshold for VEGF in developing endothelial cells. Blood. 101:2261–2267.

    Article  PubMed  CAS  Google Scholar 

  • Lawson ND (2002) Weinstein BM. Arteries and veins: Making a difference with zebrafish. Nat. Rev. Genet. 3:674–682.

    Article  PubMed  CAS  Google Scholar 

  • Mummery C, Oostwaad DWV, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R (2002) Tertoolen L. Differentiation of human embryonic stem cells to cardiomyocytes. Role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740.

    Article  CAS  Google Scholar 

  • Schroeder T, Fraser ST, Ogawa M, Nishikawa S, Oka C, Bornkamm GK, Nishikawa SI, Honjo T (2003) Just U. Recombination signal sequence-binding protein Jkappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc Natl Acad Sci USA. 100:4018–4023.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, et al. (1995) Failure of blood-island ormation and vasculogenesis in Flk1-deficient mice. Nature 376:62–66.

    Article  PubMed  CAS  Google Scholar 

  • Sone M, Itoh H, Yamashita J, et al.(2003) Different differentiation kinetics of vascular progenitor cells in primate and mouse embryonic stem cells. Circulation. 107:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Vittet D, Prandini MH, Berthier R, et al.(1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation step. Blood. 88:3424–3431.

    PubMed  CAS  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 93:741–753.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita J, Differentiation and diversification of vascular cells from ES cells. Int. Hematol. In press.

    Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, et al.(2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96.

    Article  PubMed  CAS  Google Scholar 

  • Yurugi-Kobayashi T, Itoh H, Yamashita J, et al. (2003) Effective contribution of transplanted vascular progenitor cells derived from embryonic stem cells to adult neovascularization in proper differentiation stage. Blood. 101:2675–2678.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Yamashita, J. (2005). Cardiovascular Cell Differentiation from ES Cells. In: Mori, H., Matsuda, H. (eds) Cardiovascular Regeneration Therapies Using Tissue Engineering Approaches. Springer, Tokyo. https://doi.org/10.1007/4-431-27378-6_6

Download citation

  • DOI: https://doi.org/10.1007/4-431-27378-6_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-23925-3

  • Online ISBN: 978-4-431-27378-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics