Skip to main content

Downstream Integrators of Red, Far-Red, and Blue Light Signaling for Photomorphogenesis

  • Chapter
  • 1290 Accesses

Abstract

Light energy capture by leaves, water, and mineral absorption by roots are crucial for plant survival. To guide their growth plant organs sense a variety of environmental cues, among which the direction of gravity and the direction of light are the most important. Other environmental factors dictating tropic responses like moisture and touch play minor roles in land plants and are discussed in a recent review (Blancaflor and Masson 2003).

Gravitropism and phototropism refer to the directional curvature of an organ in response to lateral differences in gravity or light, respectively. Plants respond to changes in gravity and light direction by modulating the rate of cellular elongation on opposite flanks of the stimulated organ. Such asymmetric growth leads to a curvature and subsequent realignment with the right orientation. The machinery that sustains tropism in roots, hypocotyls, and shoots of higher plants are at least partially distinct (Blancaflor and Masson 2003). This review focuses on the mechanisms underlying light interaction with gravitropism and phototropism, particularly in hypocotyls of higher plants. We will not discuss events occurring in root gravitropism or other phototropin-mediated responses. Recent reviews cover these fields more specifically (Boonsirichai et al 2002, Briggs and Christie 2002, Liscum 2003, Kiss et al 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Jarrilo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR (2003) Cryptochromes: enable plants and animals to determine circadian time. Cell 114: 537–543

    Article  PubMed  CAS  Google Scholar 

  • Cerdan PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423: 881–885

    Article  PubMed  CAS  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Duek PD, Fankhauser C (2003) HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signaling. Plant J 34: 827–836

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Duong H, Ma N, Lin C (1999) The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-translational mechanism. Plant J 19: 279–287

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Mockler T, Duong H, Lin C (2001) SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291: 487–490

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21: 2441–2450

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97: 9789–9794

    Article  PubMed  CAS  Google Scholar 

  • Kaczorowski KA, Quail PH (2003) Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell 15: 2654–2665

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, Kikis EA, Quail PH (2003) EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol 133: 1530–1538

    Article  PubMed  CAS  Google Scholar 

  • Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis phyB signal transduction pathway. Plant Cell 13: 1293–1304

    Article  PubMed  CAS  Google Scholar 

  • Mas P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA (2003) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15: 223–236

    Article  PubMed  CAS  Google Scholar 

  • Møller SG, Kim YS, Kunkel T, Chua NH (2003) PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell 15: 1111–1119

    Article  PubMed  Google Scholar 

  • Park DH, Lim PO, Kim JS, Cho DS, Hong SH, Nam HG (2003) The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. Plant J 34: 161–171

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signaling network. Nat Rev Mol Cell Biol 3: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C (2003) The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes Dev 17: 256–268

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54: 455–468

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Ni, M. (2005). Downstream Integrators of Red, Far-Red, and Blue Light Signaling for Photomorphogenesis. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_34

Download citation

Publish with us

Policies and ethics