Skip to main content

Convergence of Phytochrome and Cryptochrome Signalling

  • Chapter
Book cover Light Sensing in Plants
  • 1276 Accesses

Abstract

Light signals perceived by phytochromes (phy)and cryptochromes (cry)control diverse growth and developmental decisions throughout the life cycle of plants. The vast majority of these processes are under the simultaneous influence of multiple photoreceptors, which share the control of expression of target genes ([Ma et al 2001]). Here we describe recent advances in our understanding of the mode of photoreceptor signalling convergence and the consequences of the interactive signalling network operating downstream the photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Jarrillo JA, Smirnova O, Cashmore A (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Ádám E, Fejes E, Schäfer E, Nagy F (2004) Constitutive Photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signalling in Arabidopsis. Plant Cell 16: 1433–1445

    Article  PubMed  CAS  Google Scholar 

  • Botto JF, Alonso Blanco C, Garzarón I, Sánchez RA, Casal JJ (2003) The Cvi allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis. Plant Physiol 133: 1539–1546

    Article  CAS  Google Scholar 

  • Casal JJ (1996) Phytochrome A enhances the promotion of hypocotyl growth caused by reductions of phytochrome B Pfr levels in light-grown Arabidopsis thaliana. Plant Physiol 112: 965–973

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ (2000) Phytochromes, cryptochromes, phototropin: Photoreceptor interactions in plants. Photochem Photobiol 71: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Mazzella MA (1998) Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB and hy4 simple, double and triple mutants in Arabidopsis. Plant Physiol 118: 19–25

    Article  PubMed  CAS  Google Scholar 

  • Cerdán PD, Chory J (2003) Regulation of flowering time by light quality. Nature 423: 881–885

    Article  PubMed  CAS  Google Scholar 

  • Cerdán PD, Yanovsky MJ, Reymundo FC, Nagatani A, Staneloni RJ, Whitelam GC, Casal JJ (1999) Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana. Plant J 18: 499–507

    Article  PubMed  Google Scholar 

  • Devlin PF, Kay SA (2000) Cryptochromes are required for phytocarome signaling to the clock but not for rhythinicity. Plant Cell 12: 2499–2510

    Article  PubMed  CAS  Google Scholar 

  • Duek PD, Fankhauser C (2003) HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling. Plant J 34: 827–836

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Mockler T, Duong H, Lin C (2001) SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 19: 487–490

    Article  Google Scholar 

  • Holm M, Li-Geng M, Li-Jia Q, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16: 1247–1259

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589–2607

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Gao Y, Qu L, Chen Z, Li J, Zhao H, Deng XW (2002) Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14: 2383–2398

    Article  PubMed  CAS  Google Scholar 

  • Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408: 207–211

    Article  PubMed  Google Scholar 

  • Mazzella MA, Casal JJ (2001) Interactive signalling by phytochromes and cryptochromes generates de-etiolation homeostasis in Arabidopsis thaliana. Plant Cell Environ 24: 155–162

    Article  CAS  Google Scholar 

  • Mazzella MA, Cerdán PD, Staneloni R., Casal JJ (2001) Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128: 2291–2299

    PubMed  CAS  Google Scholar 

  • Mockler T, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126: 2073–2082

    PubMed  CAS  Google Scholar 

  • Osterlund MK, Deng XW (1998) Multiple photoreceptors mediate the light induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J 16: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17: 2642–2647

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 2003: 995–999

    Article  CAS  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001). CONSTANS mediates between the circadian clock and control of flowering in Arabidopsis. Nature 410: 1116–1120

    Article  PubMed  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98: 9437–9442

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2003) Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering. Science 303: 1003–1006

    Article  CAS  Google Scholar 

  • Weller JL, Perrotta G, Schreuder MEL, van Tuinen A, Koornneef M, Giuliano G, Kendrick RE (2001) Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J 25: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto YY, Deng XW, Matsui M (2001) CIP4, a new COP1 target, is a nucleuslocalized positive regulator of Arabidopsis photomorphogenesis. Plant Cell 13: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308–312

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Tepperman JM, Fairchild CD, Quail PH (2000) Phytochrome B binds with a greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc Natl Acad Sci USA 97: 13419–13424

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Casal, J.J. (2005). Convergence of Phytochrome and Cryptochrome Signalling. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_33

Download citation

Publish with us

Policies and ethics