Skip to main content

Roles Played by Auxin in Phototropism and Photomorphogenesis

  • Chapter
Light Sensing in Plants

Abstract

Plants respond to light to undergo adaptive changes in their growth patterns.The idea that these responses are mediated by plant hormones has long been investigated. In fact, the first-identified plant hormone auxin was discovered and the original plant hormone concept was formulated through the studies of coleoptile phototropism, a light-induced growth movement. The role for auxin has since been a central subject of phototropism research. The elongation growth of seedling organs such as mesocotyls and hypocotyls is subject to marked lightinduced inhibition. Evidence has been provided that auxin and other plant hormones participate in these typical photomorphogenetic responses. This chapter reviews and discusses the mechanisms of phototropism and photomorphogenesis, focusing on the role played by the native auxin indole-3-acetic acid (IAA). Our understanding of the molecular mechanisms by which auxin mediates these physiological processes is far from complete, but recent molecular genetic studies have began to yield useful information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Behringer FJ, Davies PJ (1992) Indole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark-and light-grown Pisum seedlings. Planta 188: 85–92

    Article  CAS  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS (2004) Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134: 28–31

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR (1963) Red light, auxin relationship, and the phototropic responses of corn and oat coleoptiles. Am J Bot 50: 196–207

    Article  CAS  Google Scholar 

  • Clouse SD (2001) Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Sci 6: 443–445

    Article  PubMed  CAS  Google Scholar 

  • Friml J, WiÅ›niewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806–809

    PubMed  Google Scholar 

  • Furuya M, Pjon C-J, Fujii T, Ito M (1969) Phytochrome action in Oryza sativa L. III. The separation of photoreceptive site and growth zone in coleoptiles, and auxin transport as effector system. Dev Growth Differ 11: 62–76

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Iino M (2004) Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant Cell Physiol 45: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Takano M, Neumann R, Iino M (2005) The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17: 103–115

    Article  PubMed  CAS  Google Scholar 

  • Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757–770

    Article  PubMed  CAS  Google Scholar 

  • Hoecker U, Toledo-Oritz G, Beuder J, Quail PH (2004) The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta 219: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Huisinga B (1976) The export of auxin from tips and from sections of Avena coleoptiles as influenced by red light. Acta Bot Neerl 25: 313–320

    CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97: 2379–2384

    Article  PubMed  CAS  Google Scholar 

  • Iino M (1982a) Action of red light on indole-3-acetic-acid status and growth in coleoptiles of etiolated maize seedlings. Planta 156: 21–32

    Article  CAS  Google Scholar 

  • Iino M (1982b) Inhibitory action of red light on the growth of the maize mesocotyl: evaluation of the auxin hypothesis. Planta 156: 388–395

    Article  CAS  Google Scholar 

  • Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ 14: 279–286

    Article  Google Scholar 

  • Iino M (2001) Phototropism in higher plants. In: Häder D-P, Lebert M (eds) Photomovement. Elsevier Science, Amsterdam, pp 659–811

    Google Scholar 

  • Iino M, Carr DJ (1982a) Estimation of free, conjugated, and diffusible indole-3-acetic acid in etiolated maize shoots by the indolo-α-pyrone fluorescence method. Plant Physiol 69: 950–956

    PubMed  Google Scholar 

  • Iino M, Carr DJ (1982b) Sources of free IAA in the mesocotyl of etiolated maize seedlings. Plant Physiol 69: 1109–1112

    PubMed  CAS  Google Scholar 

  • Iino M, Long C, Wang X (2001) Auxin-and abscisic acid-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol 42: 1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Cochran DS, Lamerson PM, Evans ML, Cohen JD (1991) Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl. Plant Physiol 97: 352–358

    Article  PubMed  CAS  Google Scholar 

  • Kanegae H, Tahir M, Savazzini F, Yamamoto K, Yano M, Sasaki T, Kanegae T, Wada M, Takano M (2000) Rice NPH1 homologues, OsNPH1a and OsNPH1b, are differently photoregulated. Plant Cell Physiol 41: 415–423

    PubMed  CAS  Google Scholar 

  • Koller D, Ritter S (1994) Phototropic responses of the pulvinules and associated laminar reorientation in the trifoliate leaf of bean Phaseolus vulgaris. J Plant Physiol 143: 52–63

    Google Scholar 

  • Koshiba T, Kamiya Y, Iino M (1995) Biosynthesis of indole-3-acetic acid from L-tryptophan in coleoptile tips of maize (Zea mays L.). Plant Cell Physiol 36: 1503–1510

    CAS  Google Scholar 

  • Kraepiel Y, Marrec K, Sotta B, Caboche M, Miginiac E (1995) In vitro morphogenic characteristics of phytochrome mutants in Nicotiana plumbaginifolia are modified and correlated to high indole-3-acetic acid levels. Planta 197: 142–146

    Article  CAS  Google Scholar 

  • Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein for phototropism. Science 286: 961–964

    Article  PubMed  CAS  Google Scholar 

  • Riemann M, Müller A, Korte A, Furuya M, Weiler EW, Nick P (2003) Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant Physiol 133: 1–11

    Article  CAS  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Slovin JP, Bandurski RS, Cohen JD (1999) Auxin. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science, Amsterdam, pp 115–140

    Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Mochizuki N, Nagatani A (2002) Expression of the AtGH3a, an Arabidopsis homologue of the soybean GH3 gene, is regulated by phytochrome B. Plant Cell Physiol 43: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16: 379–393

    Article  PubMed  CAS  Google Scholar 

  • Togo S, Hasegawa K (1991) Phototropic stimulation does not induce unequal distribution of indole-3-acetic acid in maize coleoptiles. Physiol Plant 81: 555–557

    Article  CAS  Google Scholar 

  • van Overbeek J (1936) Growth hormone and mesocotyl growth. Rec Trav Bot Neerl 33:333–340

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York London

    Google Scholar 

  • Wang X, Iino M (1997) Blue light-induced shrinking of protoplasts from maize coleoptiles and its relationship to coleoptile growth. Plant Physiol 114: 1009–1020

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Iino, M., Haga, K. (2005). Roles Played by Auxin in Phototropism and Photomorphogenesis. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_31

Download citation

Publish with us

Policies and ethics