Skip to main content

A Flavin Mononucleotide-Binding Aquaporin in the Plant Plasma Membrane: A Candidate for Photoreceptor?

  • Chapter
Light Sensing in Plants
  • 1279 Accesses

Abstract

In plants and fungi some of the blue light photoreceptors must reside in or at the plasma membrane, and most, if not all, should work with “bound” flavins. A riboflavin binding protein was characterized, initially as sites of reversible association in membrane material from several higher plants ([Hertel et al 1980]) and from the lower fungus Phycomyces ([Dohrmann 1983], [Flores et al 1999]). We showed that it was a PIP1-type aquaporin in a higher plant ([Lorenz et al 2003]). The sheer amount of this binding protein is impressive: it constitutes more than 1% of the total plasma membrane. Comparing flavoproteins, e.g., of Phycomyces, in the non-mitochondrial membranes, about five times more of our protein was present than the sum of all other flavoproteins.A similar predominance is seen in plasma membranes of higher plants. (Whether the flavin binding proteins, described by [Dederichs et al 1999] and by [Neumann and Hertel 1994] in flagellar preparations of Chlamydomonas and Euglena, respectively, are homologous, remains to be investigated.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergman K, Burke PW, Cerdá-Olmedo E, David CN, Delbrück M, Foster KW, Goodell WE, Heisenberg M, Meissner G, Zalokar M, Dennison DS, Shropshire W (1969) Phycomyces. Bacteriol Rev 33: 99–157

    PubMed  CAS  Google Scholar 

  • Christie JM, Briggs WR (2001) Blue light sensing in higher plants. J Biol Chem 276: 11457–11460

    Article  PubMed  CAS  Google Scholar 

  • Dederichs A, Schäfer A, Hertel R, van den Ende H (1999) Characterization of flavinbinding sites in Chlamydomonas flagella. Plant Biol 1: 315–320

    CAS  Google Scholar 

  • De Valois RL, Abramov I, Jacobs GH (1966) Analysis of response patterns of LGN cells. J Opt Soc Am 56: 966–977

    PubMed  Google Scholar 

  • Dohrmann U (1983) In vitro riboflavin binding and endogenous flavins in Phycomyces blakesleeanus. Planta 159: 357–365

    Article  CAS  Google Scholar 

  • Flores R, Dederichs A, Cerdá-Olmedo E, Hertel R (1999) Flavin-binding sites in Phycomyces. Plant Biol 1: 645–655

    CAS  Google Scholar 

  • Galland P (1990) Phototropism of the Phycomyces sporangiophore: a comparison with higher plants. Photochem Photobiol 52: 233–248

    Google Scholar 

  • Hager A, Brich M (1993) Blue-light-induced phosphorylation of a plasma-membrane protein from phototropically sensitive tips of maize coleoptiles. Planta 189: 567–576

    Article  CAS  Google Scholar 

  • Hertel R (1980) Phototropism of lower plants. In: Lenci F, Colombetti G (eds) Photoreception and sensory transduction in aneural organisms, NATO ASI-series A 33. Plenum, New York, pp 89–105

    Google Scholar 

  • Hertel R, Jesaitis AJ, Dohrmann U, Briggs WR (1980) In vitro binding of riboflavin in subcellular particles from maize coleoptiles and Cucurbita hypocotyls. Planta 147: 312–319

    Article  CAS  Google Scholar 

  • Iino M (2001) Phototropism in higher plants. In: Häder D-P, Lebert M (eds) Photomovement. Elsevier Science, Amsterdam, pp 659–811

    Google Scholar 

  • Kennis JTM, Crosson S, Gauden M, van Stokkum IHM, Moffat K, van Grondelle R (2003) Ultrafast spectroscopy of the LOV2 domain of phototropin: The light-driven switch works both ways. Biophys J 84: 272a

    Google Scholar 

  • Kottke T, Dick B, Fedorov R, Schlichting I, Deutzmann R, Hegemann P (2003) Irreversible photoreduction of flavin in a mutated Phot-LOV1 domain. Biochemistry 42: 9854–9862

    Article  PubMed  CAS  Google Scholar 

  • Löser G, Schäfer E (1986) Are there several photoreceptors involved in phototropism of Phycomyces blakesleeanus? Kinetic studies of dichromatic irradiation. Photochem Photobiol 43: 195–204

    Google Scholar 

  • Lorenz A, Kaldenhoff R, Hertel R (2003) A major integral protein of the plant plasma membrane binds flavin. Protoplasma 221: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Meyer AM (1969) Versuche zur 1. positiven und zur negativen phototropischen Krümmung der Avenakoleoptile. Lichtperception und Absorptionsgradient. Z Pflanzenphysiol 60: 418–433

    Google Scholar 

  • Neumann R, Hertel R (1994) Riboflavin binding protein: purification from flagella of Euglena. Photochem Photobiol 60: 76–83

    Article  CAS  Google Scholar 

  • Pollock JA, Lipson ED, Sullivan DT (1985) Analysis of microsomal flavoproteins from Phycomyces sporangiophores: candidates for the blue-light photoreceptor. Planta 163: 506–516

    Article  CAS  Google Scholar 

  • Salomon M, Zacherl M, Ruediger W (1997) Phototropism and protein phosphorylation in higher plants: unilateral blue light irradiation generates a directional gradient of protein phosphorylation across the oat coleoptile. Bot Acta 110: 214–216

    CAS  Google Scholar 

  • Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39: 9401–9410

    Article  PubMed  CAS  Google Scholar 

  • Short TW, Briggs WR (1990) Characterization of a rapid, blue-light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L.) seedlings. Plant Physiol 92: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane proteins in Nicotiona tabacum: from cellular effects to the function in plants. Plant Cell 14: 869–876

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt AR, Popescu T, Fukshansky L (1989) Is the dichroic photoreceptor for Phycomyces phototropism located at the plasma membrane or at the tonoplast? Photochem Photobiol 49: 79–87

    Google Scholar 

  • Udenfriend S (1962) Fluorescence assay in biology and medicine. Academic, New York

    Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425: 734–737

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Hertel, R. (2005). A Flavin Mononucleotide-Binding Aquaporin in the Plant Plasma Membrane: A Candidate for Photoreceptor?. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_26

Download citation

Publish with us

Policies and ethics