Skip to main content

Structural Dynamics of the Signal Termination Process in Rhodopsin

  • Chapter
Light Sensing in Plants
  • 1278 Accesses

Abstract

This review will provide and overview of what is known, and what is not known, about the visual signal termination process in mammalian vision. The focus will be on the role of structure and dynamic changes in the primary mammalian photo-transducer rhodopsin, and the protein that attenuates rhodopsin signaling, arrestin. Although this review focuses on mammalian photoreceptor proteins, analogous mechanisms may be used in the phototransduction pathways of other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babu KR, Dukkipati A, Birge RR, Knox BE (2001) Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion. Biochemistry 40: 13760–13766

    Article  PubMed  CAS  Google Scholar 

  • Borhan B, Souto ML, Imai H, Shichida Y, Nakanishi K (2000) Movement of retinal along the visual transduction path. Science 288: 2209–2212

    Article  PubMed  CAS  Google Scholar 

  • Dunham TD, Farrens DL (1999) Conformational changes in rhodopsin. Movement of helix F detected by site-specific chemical labeling and fluorescence spectroscopy. J Biol Chem 274: 1683–1690

    Article  PubMed  CAS  Google Scholar 

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20: 49–94

    Article  PubMed  CAS  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274: 768–770

    Article  PubMed  CAS  Google Scholar 

  • Ghanouni P, Steenhuis JJ, Farrens DL, Kobilka BK (2001) Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci USA 98: 5997–6002

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63: 243–290

    PubMed  CAS  Google Scholar 

  • Hwa J, Klein-Seetharaman J, Khorana HG (2001) Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proc Natl Acad Sci USA 98: 4872–4876

    Article  PubMed  CAS  Google Scholar 

  • Janz JM (2004) Structural dynamics of rhodopsin: relationships between retinal Schiff base integrity and receptor signaling states. Oregon Health and Science University, Portland, OR

    Google Scholar 

  • Janz JM, Farrens DL (2003) Assessing structural elements that influence Schiff base stability: mutants E113Q and D190N destabilize rhodopsin through different mechanisms. Vis Res 43: 2991–3002

    Article  PubMed  CAS  Google Scholar 

  • Janz JM, Farrens DL (2004) Rhodopsin activation exposes a key hydrophobic binding site for the transducin alpha-subunit C terminus. J Biol Chem 279: 29767–29773

    Article  PubMed  CAS  Google Scholar 

  • Klein-Seetharaman J, Getmanova EV, Loewen MC, Reeves PJ, Khorana HG (1999) NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. Proc Natl Acad Sci USA 96: 13744–13749

    Article  PubMed  CAS  Google Scholar 

  • McBee JK, Palczewski K, Baehr W, Pepperberg DR (2001) Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 20: 469–529

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Ernst OP, Palczewski K, Hofmann KP (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 26: 318–324

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289: 739–745

    Article  PubMed  CAS  Google Scholar 

  • Pulvermuller A, Schroder K, Fischer T, Hofmann KP (2000) Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin. J Biol Chem 275: 37679–37685

    Article  PubMed  CAS  Google Scholar 

  • Ridge KD, Lu Z, Liu X, Khorana HG (1995) Structure and function in rhodopsin. Separation and characterization of the correctly folded and misfolded opsins produced on expression of an opsin mutant gene containing only the native intradiscal cysteine codons. Biochemistry 34: 3261–3267

    Article  PubMed  CAS  Google Scholar 

  • Ridge KD, Abdulaev NG, Sousa M, Palczewski K (2003) Phototransduction: crystal clear. Trends Biochem Sci 28: 479–487

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Khorana HG (1995) Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro. Proc Natl Acad Sci USA 92: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Shilton BH, McDowell JH, Smith WC, Hargrave PA (2002) The solution structure and activation of visual arrestin studied by small-angle X-ray scattering. Eur J Biochem 269: 3801–3809

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, Hargrave PA (2000) Mapping interaction sites between rhodopsin and arrestin by phage display and synthetic peptides. Methods Enzymol 315: 437–455

    Article  PubMed  CAS  Google Scholar 

  • Vogel R, Siebert F (2002) Conformation and stability of alpha-helical membrane proteins. 2. Influence of pH and salts on stability and unfolding of rhodopsin. Biochemistry 41: 3536–3545

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Gross AK, Oprian DD (2003) An opsin mutant with increased thermal stability. Biochemistry 42: 1995–2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Farrens, D.L. (2005). Structural Dynamics of the Signal Termination Process in Rhodopsin. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_23

Download citation

Publish with us

Policies and ethics