Skip to main content

Vibrational Spectroscopy Explores the Photoreaction of LOV Domains

  • Chapter
  • 1126 Accesses

Abstract

Plant phototropins (phot) exhibit a peculiar architecture such that two LOV domains (LOV1 and LOV2) are present in a tandem-like arrangement (N- terminal part of the protein), followed by a C-terminal serine/threonine kinase domain that catalyzes the light-driven autophosphorylation of phot ([Huala et al 1997]). The three-dimensional structure of the LOV1 domain from the green algae Chlamydomonas reinhardtii ([Fedorov et al 2003]) and the LOV2 domain from the fern Adiantum capillus-veneris ([Crosson and Moffat 2001], [2002]) have both been determined in the dark state as well as in the corresponding long-lived interme- diate state.

Keywords

  • Electron Paramagnetic Resonance
  • Vibrational Spectroscopy
  • Reactive Cysteine
  • Rotamer Conformation
  • Chromophore Binding

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/4-431-27092-2_17
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-27092-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbar S, Gaidenko TA, Kang CM, O’Reilly M, Devine KM, Price CW (2001) New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol 183: 1329–1338

    PubMed  CrossRef  CAS  Google Scholar 

  • Ataka K, Hegemann P, Heberle J (2003) Vibrational spectroscopy of an algal phot-LOV1 domain probes the molecular changes associated with blue-light reception. Biophys J 84: 466–474

    PubMed  CAS  CrossRef  Google Scholar 

  • Bare GH, Alben JO, Bromberg PA (1975) Sulfhydryl groups in hemoglobin. A new molecular probe at the α1 β1 interface studied by Fourier transform infrared spectroscopy. Biochemistry 14: 1578–1583

    PubMed  CrossRef  CAS  Google Scholar 

  • Bednarz T, Losi A, Gärtner W, Hegemann P, Heberle J (2004) Functional variations among LOV domains as revealed by FT-IR difference spectroscopy. Photochem Photobiol Sci 3: 575–579

    PubMed  CrossRef  CAS  Google Scholar 

  • Bittl R, Kay CWM, Weber S, Hegemann P (2003) Characterization of a flavin radical product in a C57M mutant of a LOV1 domain by electron paramagnetic resonance. Biochemistry 42: 8506–8512

    PubMed  CrossRef  CAS  Google Scholar 

  • Crosson S, Moffat K (2001) Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc Natl Acad Sci USA 98: 2995–3000

    PubMed  CrossRef  CAS  Google Scholar 

  • Crosson S, Moffat K (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14: 1067–1075

    PubMed  CrossRef  CAS  Google Scholar 

  • Fedorov R, Schlichting I, Hartmann E, Domratcheva T, Fuhrmann M, Hegemann P (2003) Crystal structures and molecular mechanism of a light-induced signaling switch: The phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys J 84: 2474–2482

    PubMed  CAS  Google Scholar 

  • Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301: 1541–1544

    PubMed  CrossRef  CAS  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278: 2120–2123

    PubMed  CrossRef  CAS  Google Scholar 

  • Iwata T, Tokutomi S, Kandori H (2002) Photoreaction of the cysteine S-H group in the LOV2 domain of Adiantum phytochrome3. J Am Chem Soc 124: 11840–11841

    PubMed  CrossRef  CAS  Google Scholar 

  • Iwata T, Nozaki D, Tokutomi S, Kagawa T, Wada M, Kandori H (2003) Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by lowtemperature FTIR and UV-visible spectroscopy. Biochemistry 42: 8183–8191

    PubMed  CrossRef  CAS  Google Scholar 

  • Kasahara M, Swartz TE, Olney MA, Onodera A, Mochizuki N, Fukuzawa H, Asamizu E, Tabata S, Kanegae H, Takano M, Christie JM, Nagatani A, Briggs WR (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol 129: 762–773

    PubMed  CrossRef  CAS  Google Scholar 

  • Kay CW, Schleicher E, Kuppig A, Hofner H, Rüdiger W, Schleicher M, Fischer M, Bacher A, Weber S, Richter G (2003) Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin. J Biol Chem 278: 10973–10982

    PubMed  CrossRef  CAS  Google Scholar 

  • Kennis JT, Crosson S, Gauden M, van Stokkum IH, Moffat K, van Grondelle R (2003) Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. Biochemistry 42: 3385–3392

    PubMed  CrossRef  CAS  Google Scholar 

  • Kottke T, Heberle J, Hehn D, Dick B, Hegemann P (2003) Phot-LOV1: Photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys J 84: 1192–1201

    PubMed  CAS  Google Scholar 

  • Losi A, Quest B, Gärtner W (2003) Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem Photobiol Sci 2: 759–766

    PubMed  CrossRef  CAS  Google Scholar 

  • Moh PP, Fiamingo FG, Alben JO (1987) Conformational sensitivity of β-93 cysteine SH to ligation of hemoglobin observed by FT-IR spectroscopy. Biochemistry 26: 6243–6249

    PubMed  CrossRef  CAS  Google Scholar 

  • Nyquist RM, Ataka K, Heberle J (2004) The molecular mechanism of membrane proteins probed by evanescent infrared waves. Chem Bio Chem 5: 431–436

    PubMed  CAS  Google Scholar 

  • Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39: 9401–9410

    PubMed  CrossRef  CAS  Google Scholar 

  • Salomon M, Eisenreich W, Dürr H, Schleicher E, Knieb E, Massey V, Rüdiger W, Müller F, Bacher A, Richter G (2001) An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc Natl Acad Sci USA 98: 12357–12361

    PubMed  CrossRef  CAS  Google Scholar 

  • Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, Bogomolni RA (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276: 36493–36500

    PubMed  CrossRef  CAS  Google Scholar 

  • Swartz TE, Wenzel PJ, Corchnoy SB, Briggs WR, Bogomolni RA (2002) Vibration spectroscopy reveals light-induced chromophore and protein structural changes in the LOV2 domain of the plant blue-light receptor phototropin 1. Biochemistry 41: 7183–7189

    PubMed  CrossRef  CAS  Google Scholar 

  • Vogel R, Siebert F (2000) Vibrational spectroscopy as a tool for probing protein function. Curr Opin Chem Biol 4: 518–523

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Heberle, J. (2005). Vibrational Spectroscopy Explores the Photoreaction of LOV Domains. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_17

Download citation