Skip to main content

Hemoglobin-Vesicles (HbV) as Artificial Oxygen Carriers

  • Conference paper

Part of the book series: Keio University International Symposia for Life Sciences and Medicine ((KEIO,volume 12))

Summary

Considering the physiological significance of the cellular structure of a red blood cell (RBC), it may be reasonable to mimic its structure for designing a hemoglobin (Hb)-based oxygen carrier. In this chapter, we have summarized the characteristics and performances of Hb-vesicles (HbV) that have been developed on the basis of molecular assembly. Collaborative in vitro and in vivo studies have revealed sufficient safety and efficacy of HbV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsuchida E, Takeoka S (1995) Stabilized hemoglobin vesicles. In: Tsuchida E (ed) Artificial red cells. John Wiley & Sons, Chichester, pp 35–64

    Google Scholar 

  2. Chang TMS (1991) Blood substitutes based on modified hemoglobin prepared by encapsulation or crosslinking: An overview. Biomater Artif Cells Immobilization Biotechnol 20:159–182

    Google Scholar 

  3. Toyoda T (1965) Artificial blood. Kagaku 35:7–13

    Google Scholar 

  4. Kitajima M, Sekiguchi W, Kondo A (1971) A modification of red blood cells by isocyanates. Bull Chem Soc Jpn 44:139–143

    CAS  PubMed  Google Scholar 

  5. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structure modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    CAS  Google Scholar 

  6. Djordjevich L, Miller IF (1977) Lipid encapsulated hemoglobin as a synthetic erythrocyte. Fed Proc 36:567

    Google Scholar 

  7. Hunt CA, Burnette RR, MacGregor RD, et al (1985) Synthesis and evaluation of a protypal artificial red cell. Science 230:1165–1168

    CAS  PubMed  Google Scholar 

  8. Kato A, Arakawa M, Kondo T (1984) Liposome-type artificial red blood cells stabilized with carboxymethylchitin. Nippon Kagaku Kaishi 6:987–991

    Google Scholar 

  9. Gaber BP, Farmer MC (1984) Encapsulation of hemoglobin in phospholipid vesicles: preparation and properties of a red cell surrogate. Prog Clin Biol Res 165:179–190

    CAS  PubMed  Google Scholar 

  10. Hayward JA, Levine DM, Neufeld L, et al (1985) Polymerized liposomes as stable oxygen-carriers. FEBS Lett 187:261–266

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki K, Miyauchi Y, Okamoto T, et al (1988) The characteristics and ability of NRC. Jpn J Artif Organs 17:708–711

    Google Scholar 

  12. Rudolph AS (1988) Freeze-dried preservation of liposome encapsulated hemoglobin: A potential blood substitute. Cryobiology 25:277–284

    Article  CAS  PubMed  Google Scholar 

  13. Jopski B, Pirkl V, Jaroni HW, et al (1989) Preparation of hemoglobin-containing liposomes using octyl glucoside and octyltetraoxyethylene. Biochim Biophys Acta 978:79–84

    CAS  PubMed  Google Scholar 

  14. Mobed M, Chang TMS (1991) Preparation and surface characterization of carboxymethylchitin-incorporated submicron bilayer-lipid membrane artificial cells (liposomes) encapsulating hemoglobin. Biomater Artif Cells Immobil Biotechnol 19:731–744

    CAS  Google Scholar 

  15. Zheng S, Zheng Y, Beissinger R (1994) Efficacy, physical properties and pharmacokinetics of sterically-stabilized liposome-encapsulated hemoglobin. Artif Cells Blood Substitutes Immobil Biotechnol 22:487–501

    CAS  Google Scholar 

  16. Liu L, Yonetani T (1994) Preparation and characterization of liposome-encapsulated haemoglobin by a freeze-thaw method. J Microencapsulation 11:409–421

    CAS  PubMed  Google Scholar 

  17. Tsuchida E (1998) Blood substitutes: present and future perspectives. Elsevier, Chichester

    Google Scholar 

  18. Sakai H, Takeoka S, Yokohama H, et al (1993) Purification of concentrated Hb using organic solvent and heat treatment. Protein Expression Purif 4:563–569

    Article  CAS  Google Scholar 

  19. Fukutomi I, Sakai H, Takeoka S, Nishide H, Tsuchida E, Sakai K (2002) Carbonylation of oxyhemoglobin solution using a membrane oxygenator. J Artif Organs 5:102–107

    Article  CAS  Google Scholar 

  20. Sakai H, Masada Y, Takeoka S, et al (2002) Characteristics of bovine hemoglobin as a potential source of hemoglobin-vesicles for an artificial oxygen carrier. J Biochem 131:611–617

    CAS  PubMed  Google Scholar 

  21. Abe H, Ikebuchi K, Hirayama J, et al (2001) Virus inactivation in hemoglobin solution by heat treatment. Artif Cells Blood Substit Immobil Biotechnol 29:381–388

    CAS  PubMed  Google Scholar 

  22. Huang Y, Takeoka S, Sakai H, et al (2002) Complete deoxygenation from a hemoglobin solution by an electro-chemical method and heat treatment for virus inactivation. Biotechnol Prog 18:101–107

    CAS  PubMed  Google Scholar 

  23. Naito Y, Fukutomi I, Masada Y, et al (2002) Virus removal from hemoglobin solution using Planova membrane. J Artif Organs 5:141–145

    Article  Google Scholar 

  24. Chung JE, Hamada K, Sakai H, et al (1995) Ligand exchange reaction of carbonylhemoglobin to oxyhemoglobin in a hemoglobin liquid membrane. Nippon Kagaku Kaishi 1995: 123–127

    Google Scholar 

  25. Takahashi A (1995) Characterization of neo red cells (NRCs), their function and safety in vivo tests. Artif Cells Blood Substitutes Immobil Biotechnol 23:347–354

    CAS  Google Scholar 

  26. Ogata Y, Goto H, Kimura T, et al (1997) Development of neo red cells (NRC) with the enzymatic reduction system of methemoglobin. Artif Cells Blood Substitutes Immobil Biotechnol 25:417–427

    CAS  Google Scholar 

  27. Teramura Y, Kanazawa H, Sakai H, et al (2003) The prolonged oxygen—carrying ability of Hb vesicles by coencapsulation of catalase in vivo. Bioconjugate Chem 14:1171–1176

    Article  CAS  Google Scholar 

  28. Sakai H, Onuma H, Umeyama M, et al (2000) Photoreduction of methemoglobin by irradiation in near-ultraviolet region. Biochemistry 39:14595–14602

    Article  CAS  PubMed  Google Scholar 

  29. Takeoka S, Sakai H, Kose T, et al (1997) Methemoglobin formation in hemoglobin vesicles and reduction by encapsulated thiols. Bioconjugate Chem 8:539–544 (1997)

    Article  CAS  Google Scholar 

  30. Takeoka S, Ohgushi T, Sakai H, et al (1997) Construction of artificial metHb reduction system in Hb-vesicles. Artif Cells Blood Substitues Immobil Biotechnol 25:31–41

    CAS  Google Scholar 

  31. Sakai H, Takeoka S, Seino Y, et al (1994) Suppression of methemoglobin formation by glutathione in a concentrated hemoglobin solution and in a Hb-vesicles. Bull Chem Soc Jpn 67:1120–1125

    CAS  Google Scholar 

  32. Takeoka S, Sakai H, Nishide H, et al (1993) Preparation conditions of human hemoglobin-vesicles covered with lipid membranes. Jpn J Artif Organs 22:566–569

    Google Scholar 

  33. Takeoka S, Terase K, Sakai H, et al (1994) Interaction between phosphoslipid assemblies and hemoglobin (Hb). J Macromol Sci Pure Appl Chem A31:97–108

    CAS  Google Scholar 

  34. Takeoka S, Sakai H, Terease K, et al (1994) Characteristics of Hb-vesicles and encapsulation procedure. Artif Cells Blood Substitutes Immobilization Biotechnol 22:861–866

    CAS  Google Scholar 

  35. Takeoka S, Ohgushi T, Terase K, et al (1996) Layer-controlled hemoglobin vesicles by interaction of hemoglobin with a phospholipid assembly. Langmuir 12:1755–1759

    CAS  Google Scholar 

  36. Sakai H, Hamada K, Takeoka S, et al (1996) Physical properties of hemoglobin vesicles as red cell substitutes. Biotechnol Prog 12:119–125

    Article  CAS  PubMed  Google Scholar 

  37. Sou K, Naito Y, Endo T, et al (2003) Effective encapsulation of proteins into sizecontrolled phospholipid vesicles using freeze-thawing and extrusion. Biotechnol Prog 19:1547–1552

    Article  CAS  PubMed  Google Scholar 

  38. Shirasawa T, Izumizaki M, Suzuki Y, et al (2003) Oxygen affinity of hemoglobin regulates O2 consumption, metabolism, and physical activity. J Biol Chem 278:5035–5043

    Article  CAS  PubMed  Google Scholar 

  39. Sakai H, Yuasa M, Onuma H, et al (2000) Synthesis and physicochemical characterization of a series of hemoglobin-based oxygen carriers: objective comparison between cellular and acellular types. Bioconjug Chem 11:56–64

    CAS  PubMed  Google Scholar 

  40. Benesch R, Behesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun 26:162–167

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Morizawa K, Tokuyama S, et al (1992) Modulation of oxygen-carrying capacity of artificial red cells (ARC). Polymer Adv Technol 4:8–11

    Google Scholar 

  42. Matsumura S, Yamaji K, Ohki H, et al (1992) Large scale production and characterization of lyophylized pyridoxalated hemoglobin polyoxyethylene (PHP). Biomater Artif Cells Immobil Biotechnol 20:435–438

    CAS  Google Scholar 

  43. Kerwin BA, Heller MC, Levin SH, et al (1998) Effects of Tween 80 and scrose on acute short-term stability and long-term storage at −20 °C of a recombinant hemoglobin. J Pharm Sci 87:1062–1068

    Article  CAS  PubMed  Google Scholar 

  44. Kerwin BA, Akers MJ, Apostol I, et al (1999) Acute and long-term stability studies of deoxy hemoglobin and characterization of ascorbate-induced modifications. J Pharm Sci 88:79–88

    Article  CAS  PubMed  Google Scholar 

  45. Levy A, Zhang L, Rifkind JM (1988) Hemoglobin: a source of superoxide radical under hypoxic conditions. Oxy-radicals Mol Pathol Proc Upjohn-UCLA Symp 11–25

    Google Scholar 

  46. Balagopalakrishna C, Manoharan PT, Abugo OO, et al (1996) Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry 35:6393–6398

    Article  CAS  PubMed  Google Scholar 

  47. Tsuchida E, Hasegawa E, Kimura N, et al (1992) Polymerization of unsaturated phospholipids as large unilamellar liposomes at low temperature. Macromolecules 25:207–212

    Article  CAS  Google Scholar 

  48. Hosoi F, Omichi H, Akama K, et al (1997) Radiation-induced polymerization of phospholipids mixtures for the synthesis of artificial red blood cells. Nucl Instr Methods Phys Res B 131:329–334

    CAS  Google Scholar 

  49. Satoh T, Kobayashi K, Sekiguchi S, et al (1992) Characteristics of artificial red cells: hemoglobin encapsulated in poly-lipid vesicles. ASAIO J 38:M580–M584

    CAS  PubMed  Google Scholar 

  50. Wang L, Takeoka S, Tsuchida E, et al (1992) Preparation of dehydrated powder of hemoglobin vesicles. Polymer Adv Technol 3:17–21

    CAS  Google Scholar 

  51. Sakai H, Takeoka S, Yokohama H, et al (1992) Encapsulation of Hb into unsaturated lipid vesicles and g-ray polymerization. Polymer Adv Technol 3:389–394

    CAS  Google Scholar 

  52. Rudolph AS, Cliff RO (1990) Dry storage of liposome-encapsulated hemoglobin: a blood substitute. Cryobiology 27:585–590

    CAS  PubMed  Google Scholar 

  53. Sakai H, Takisada M, Chung JE, et al (1995) Modification of hemoglobin-vesicles with oligosaccharide chains. Artif Organs Today 4:309–316

    CAS  Google Scholar 

  54. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113:171–199

    CAS  PubMed  Google Scholar 

  55. Klibanov AL, Maruyama K, Torchilin VP, et al (1990) Amphipathic polyethylene glycols effectively prolongs the circulation time of liposomes. FEBS Lett 268:235–237

    Article  CAS  PubMed  Google Scholar 

  56. Yoshioka H (1991) Surface modification of haemoglobin-containing liposomes with poly(ethylene glycol) prevents liposome aggregation in blood plasma. Biomaterials 12:861–864

    Article  CAS  PubMed  Google Scholar 

  57. Sakai H, Tsai AG, Kerger H, et al (1998) Subcutaneous microvascular responses to hemodilution with red cell substitutes consisting of polyethylene glycol-modified vesicles encapsulating hemoglobin. J Biomed Mater Res 40:66–78

    Article  CAS  PubMed  Google Scholar 

  58. Sakai H, Takeoka S, Park SI, et al (1997) Surface-modification of hemoglobin vesicles with poly(ethylene glycol) and effects on aggregation, viscosity, and blood flow during 90%-exchange transfusion in anesthetized rats. Bioconjugate Chem 8:23–30

    Article  CAS  Google Scholar 

  59. Phillips WT, Klipper RW, Awasthi VD, et al (1999) Poly(ethylene glycol)-modified liposome-encapsulated hemoglobin: a long circulating red cell substitute. J Pharm Exp Ther 288:665–670

    CAS  Google Scholar 

  60. Singh M, Ferdous AJ, Jackson TL (1999) Stealth monensis liposomes as a potentiator of adriamycin in cancer treatment. J Controlled Release 59:43–53

    Article  CAS  Google Scholar 

  61. Meyer O, Kirpotin D, Hong K, et al (1998) Cationic liposomes coated with polyethyle glycol as carriers for oligonucleotide. J Biol Chem 273:15621–15627

    CAS  PubMed  Google Scholar 

  62. Sakai H, Tomiyama K, Sou K, et al (2000) Poly(ethylene glycol)-conjugation and deoxygenation enable long-term preservation of hemoglobin-vesicles as oxygen carriers in a liquid state Bioconjugate Chem 11:425–432

    CAS  Google Scholar 

  63. Fletcher JR, Ramwell PW (1980) The effects of prostacyclin on endotoxin shock and endotoxin-induced platelet aggregation in dogs. Circ Shock 7:299–308

    CAS  PubMed  Google Scholar 

  64. Shibayama Y, Asaka S, Nakata K (1991) Endotoxin hepatotoxicity augmented by alcohol. Exp Mol Pathol 55:196–202

    CAS  PubMed  Google Scholar 

  65. U.S. Department of Health and Human Services Public Health Service, Food and Drug Administration (1987) Guideline on validation of the limulus amebocyte lysate test as an end-product endotoxin test for human and animal parenteral drugs, biological products, and medical devices

    Google Scholar 

  66. Levin J, Bang FB (1964) The role of endotoxin in the extracellulalr coagulation of limulus blood. Bull Johns Hopkins Hospital 115:265–274

    CAS  Google Scholar 

  67. Fujiwara H, Ishida S, Shimazaki Y, et al (1990) Measurement of endotoxin in blood products using an endotoxin specific Limulus test reagent and its relation to pyrogenic activities in rabbit. Yakugaku Zasshi 110:332–340 (in Japanese)

    CAS  PubMed  Google Scholar 

  68. Carr C Jr, Morrison DC (1984) Lipopolysaccharide interaction with rabbit erythrocyte membranes. Infect Immun 43:600–606

    CAS  PubMed  Google Scholar 

  69. Kaca W, Roth RI, Levin J (1994) Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. J Biol Chem 269:25078–25084

    CAS  PubMed  Google Scholar 

  70. Roth RI, Levin J, Chapman KW, et al (1993) Production of modified crosslinked cellfree hemoglobin for human use: the role of quantitative determination of endotoxin contamination. Transfusion 33:919–924

    Article  CAS  PubMed  Google Scholar 

  71. Yin ET, Galanos C, Kinsky S, et al (1972) Picogram-sensitive assay for endotoxin: Gelation of Limulus polyphemus blood cell lysate induced by purified lipopolysaccharides and lipid A from gram-negative bacteria. Biochim Biophys Acta 261:284–289

    CAS  PubMed  Google Scholar 

  72. Richardson EC, Banerji B, Seid RC Jr, et al (1983) Interactions of lipid A and liposome-associated lipid A with Limulus polyphemus amoebocytes. Infect Immun 39:1385–1391

    CAS  PubMed  Google Scholar 

  73. Sakai H, Hisamoto S, Fukutomi I, et al (2004) Detection of lipopolysaccharide in hemoglobin-vesicles by Limulus amebocyte lysate test with kinetic-turbidimetric gel clotting analysis and pretreatment of surfactant. J Pharm Sci 93:310–321

    Article  CAS  PubMed  Google Scholar 

  74. Jurgens G, Muller M, Koch MHJ, et al (2001) Interaction of hemoglobin with enterobacterial lipopolysaccharide and lipid A. Eur J Biochem 268:4233–4242

    Article  CAS  PubMed  Google Scholar 

  75. Cliff RO, Kwasiborski V, Rudolph AS (1995) A comparative study of the accurate measurement of endotoxin in liposome encapsulated hemoglobin. Artif Cells Blood Substitutes Immobil Biotechnol 23:331–336. Links

    CAS  Google Scholar 

  76. Harmon P, Cabral-Lilly D, Reed RA, et al (1997) The release and detection of endotoxin from liposomes. Anal Biochem 250:139–146

    Article  CAS  PubMed  Google Scholar 

  77. Piluso LG, Martinez MY (1999) Resolving liposomal inhibition of quantitative LAL methods. PDA J Pharm Sci Technol 53:260–263

    CAS  PubMed  Google Scholar 

  78. Minobe S, Nawata M, Watanabe T, et al (1991) Specific assay for endotoxin using immobilized histidine and Limulus amebocyte lysate. Anal Biochem 198:292–297

    Article  CAS  PubMed  Google Scholar 

  79. Alayash AI (1999) Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nat Biotechnol 17:545–549

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto Y, Brodsky MH, Baker JC, et al (1987) Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography. Anal Biochem 160:7–13

    CAS  PubMed  Google Scholar 

  81. Grisham MB, Gaginell TS, Von Ritter C, et al (1990) Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation 14:531–542

    CAS  PubMed  Google Scholar 

  82. Nagababu E, Rifkind JM (2000) Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation. Biochemistry 39:12503–12511

    Article  CAS  PubMed  Google Scholar 

  83. Gunther MR, Sampath V, Caughey WS (1999) Potential roles of myoglobin autoxidation in myocardial ischemia-reperfusion injury. Free Radic Biol Med 26:1388–1395

    Article  CAS  PubMed  Google Scholar 

  84. Svistunenko DA, Patel RP, Voloshchenko SV, et al (1997) The globin-based free radical of ferryl hemoglobin is detected in normal human blood. J Biol Chem 272:7114–7121

    CAS  PubMed  Google Scholar 

  85. Clark MR (1988) Senescence of red blood cells: progress and problems. Physiol Rev 68:503–554

    CAS  PubMed  Google Scholar 

  86. Mcleod LL, Alayash AI (1999) Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol 277:H92–H99

    CAS  Google Scholar 

  87. Goldman DW, Breyer RJ III, Yeh D, et al (1998) Acellular hemoglobin-mediated oxidative stress toward endothelium: a role for ferryl iron. Am J Physiol Heart Circ Physiol 275:H1046–H1053

    CAS  Google Scholar 

  88. D’Agnillo F, Alayash AI (2000) Interactions of hemoglobin with hydrogen peroxide alters thiol levels and course of endothelial cell death. Am J Physiol Heart Circ Physiol 279:H1880–H1889

    CAS  PubMed  Google Scholar 

  89. Takeoka S, Teramura Y, Atoji T, et al (2002) Effect of Hb-encapsulation with vesicles on H2O2 reaction and lipid peroxidation. Bioconjugate Chem 13:1302–1308

    Article  CAS  Google Scholar 

  90. Glick MR, Ryder KW (1993) Double trouble: hemolysis and stabilized hemoglobins (so you think you’re seeing red now?). Clin Chem 39:1761–1763

    CAS  PubMed  Google Scholar 

  91. Ma Z, Monk TG, Goodnough LT, et al (1997) Effect of hemoglobin-and perflubronbased oxygen carriers on common clinical laboratory tests. Clin Chem 43:1732–1737

    CAS  PubMed  Google Scholar 

  92. Chance JJ, Norris EJ, Kroll MH (2000) Mechanism of interference of a polymerized hemoglobin blood substitutes in an alkaline phosphatase method. Clin Chem 46:1331–1337

    CAS  PubMed  Google Scholar 

  93. Kazmierczak SC, Catrou PG, Best AE, et al (1999) Multiple regression analysis of interference effects from a hemoglobin-based oxygen carrier solution. Clin Chem Lab Med 37:453–464

    CAS  PubMed  Google Scholar 

  94. Kazmierczak SC, Catrou PG, Boudreau D (1998) Simplified interpretative format for assessing test interference: studies with hemoglobin-based oxygen carrier solutions. Clin Chem 44:2347–2352

    CAS  PubMed  Google Scholar 

  95. Sakai H, Tomiyama K, Masada Y, et al (2003) Pretreatment of serum containing Hbvesicles (oxygen carriers) to avoid their interference in laboratory tests. Clin Chem Lab Med 41:222–231

    Article  CAS  PubMed  Google Scholar 

  96. Nolte D, Pickelmann S, Lang M, et al (2000) Compatibility of different colloid plasma expanders with Peflubron emulsion. Anesthesiology 93:1261–1270

    CAS  PubMed  Google Scholar 

  97. Yoshizu A, Yamahata T, Izumi Y, et al (1997) The oxygen transporting capability of hemoglobin vesicle, an artificial oxygen carrier, evaluated in a rat hemorrhagic shock model. Artif Blood 5:18–22

    CAS  Google Scholar 

  98. Yoshizu A, Izumi Y, Park SI, et al (2004) Hemorrhagic shock resuscitation with an artificial oxygen carrier Hemoglobin Vesicle (HbV) maintains intestinal perfusion and suppresses the increase in plasma necrosis factor alpha (TNF α). ASAIO J (submitted)

    Google Scholar 

  99. Sakai H, Takeoka S, Wettstein R, et al (2002) Systemic and Microvascular responses to the hemorrhagic shock and resuscitation with Hb-vesicles. Am J Physiol Heart Circ Physiol 283:H1191–H1199

    CAS  PubMed  Google Scholar 

  100. Sakai H, Horinouchi H, Masada Y, et al (2004) Hemoglobin-vesicles suspended in recombinant human serum albumin for resuscitation from hemorrhagic shock in anesthetized rats. Crit Care Med 32:539–545

    CAS  PubMed  Google Scholar 

  101. Izumi Y, Sakai H, Hamada K, et al (1996) Physiologic responses to exchange transfusion with Hemoglobin Vesicles as an artificial oxygen carrier in anesthetized rats: changes in mean arterial pressure and renal cortical oxygen tension. Crit Care Med 24:1869–1873

    CAS  PubMed  Google Scholar 

  102. Sakai H, Izumi Y, Yamahata T, et al (1995) Evaluation of oxygen transport of hemoglobin vesicles by exchange transfusion into rats. Artif Blood 3:81–86

    CAS  Google Scholar 

  103. Kobayashi K, Izumi Y, Yoshizu A, et al (1997) The oxygen carrying capability of hemoglobin vesicles evaluated in rat exchange transfusion models. Artif Cells Blood Substitues Immobil Biotechnol 25:357–366

    CAS  Google Scholar 

  104. Izumi Y, Sakai H, Takeoka S, et al (1997) Evaluation of the capabilities of a hemoglobin vesicle as an artificial oxygen carrier in a rat exchange transfusion model. ASAIO J 43:289–297

    CAS  PubMed  Google Scholar 

  105. Sakai H, Tsai AG, Rohlfs RJ, et al (1999) Microvascular responses to hemodilution with Hb-vesicles as red cell substitutes: Influences of O2 affinity. Am J Physiol Heart Circ. Physiol 276:H553–H562

    CAS  Google Scholar 

  106. Erni D, Wettstein R, Schramm S, et al (2003) Normovolemic hemodilution with hemoglobin-vesicle solution attenuates hypoxia in ischemic hamster flap tissue. Am J Physiol Heart Circ Physiol 284:H1702–H1709

    CAS  PubMed  Google Scholar 

  107. Contaldo C, Schramm S, Wettstein R, et al (2003) Improved oxygenation in ischemic hamster flap tissue is correlated with increasing hemodilution with Hb vesicles and their O2 affinity. Am J Physiol Heart Circ Physiol 285:H1140–H1147

    CAS  PubMed  Google Scholar 

  108. Tsai AG, Intaglietta M (2001) High viscosity plasma expanders: Volume restitution fluid for lowering the perfusion trigger. Biorheology 38:229–237

    CAS  PubMed  Google Scholar 

  109. Sakai H, Suzuki Y, Kinoshita M, et al (2003) O2 release from Hb vesicles evaluated using an artificial, narrow O2-permaeble tube: comparison with RBCs and acellular Hbs. Am J Physiol Heart Circ Physiol 285:H2543–H2551

    CAS  PubMed  Google Scholar 

  110. Page TC, Light WR, McKay CB, et al (1998) Oxygen transport by erythrocyte/hemoglobin solution mixtures in an in vitro capillary as a model of hemoglobin-based oxygen carrier performance. Microvasc Res 55:54–66

    Article  CAS  PubMed  Google Scholar 

  111. Baines AD, Adamson G, Wojciechowski P, et al (1998) Effect of modifying O2 diffusivity and delivery on glomerular and tubular function in hypoxic perfused kidney. Am J Physiol Renal Physiol 274:F744–F752

    CAS  Google Scholar 

  112. Rohlfs RJ, Bruner E, Chiu A, et al (1998) Arterial blood pressure responses to cell-free hemoglobin solutions and the reaction with nitric oxide. J Biol Chem 273:12128–12134

    Article  CAS  PubMed  Google Scholar 

  113. Tsai AG, Kerger H, Intaglietta M (1995) Microcirculatory consequences of blood substitution with aa-hemoglobin. In: Winslow RM, Vandegriff K, Intaglietta M (eds) Blood substitutes: physiological basis of efficacy. Birkhauser, Boston, pp 155–174

    Google Scholar 

  114. Rabinovici R, Rudolph AS, Yue TL, et al (1990) Biological responses to liposome-encapsulated hemoglobin (LEH) are improved by a PAF antagonist. Circ Shock 31:431–445

    CAS  PubMed  Google Scholar 

  115. Loughrey HC, Bally MB, Reinish LW, et al (1990) The binding of phosphatidylglycerol liposomes to rat platelets is mediated by complement. Thromb Haemost 64:172–176

    CAS  PubMed  Google Scholar 

  116. Doerschuk CM, Gie RP, Bally MB, et al (1989) Platelet distribution in rabbits following infusion of liposomes. Thromb Haemost 61:392–396

    CAS  PubMed  Google Scholar 

  117. Wakamoto S, Fujihara M, Abe H, et al (2001) Effects of poly(ethyleneglycol)-modified hemoglobin vesicles on agonist-induced platelet aggregation and RANTES release in vitro. Artif Cells Blood Substit Immobil Biotechnol 29:191–201

    Article  CAS  PubMed  Google Scholar 

  118. Hatipoglu U, Gao X, Verral S, et al (1998) Sterically stabilized phospholipids attenuate human neutrophils chemotaxis in vitro. Life Sci 63:693–699

    Article  CAS  PubMed  Google Scholar 

  119. Ito T, Fujihara M, Abe H, et al (2001) Effects of poly(ethyleneglycol)-modified hemoglobin vesicles on N-formyl-methionyl-leucyl-phenylalanine-induced responses of polymorphonuclear neutrophils in vitro. Artif Cells Blood Substit Immobil Biotechnol 29:427–437

    Article  CAS  PubMed  Google Scholar 

  120. Abassi Z, Kotob S, Pieruzzi F, et al (1997) Effect of polymerization on the hypertensive action of diaspirin cross-linked hemoglobin in rats. J Lab Clin Med 129:603–610

    Article  CAS  PubMed  Google Scholar 

  121. Gardiner SM, Compton AM, Bennett T, et al (1990) Control of regional blood flow by endothelium-derived nitric oxide. Hypertension 15:486–492

    CAS  PubMed  Google Scholar 

  122. Doherty, DH, Doyle MP, et al (1988) Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 16:672–676

    Google Scholar 

  123. Moncada, S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–131

    CAS  PubMed  Google Scholar 

  124. Rioux, F, Drapeau G, Marceau F (1995) Recombinant human hemoglobin (rHb1.1) selectively inhibits vasorelaxation elicted by nitric oxide donors in rabbit isolated aortic rings. J Cardiovasc Pharmacol 25:587–594

    CAS  PubMed  Google Scholar 

  125. Nakai, K, Ohta T, Sakuma I, et al (1996) Inhibition of endothelium-dependent relaxation by hemoglobin in rabbit aortic strips: comparison between acellular hemoglobin derivatives and cellular hemoglobins. J Cardiovasc Pharmacol 28:115–123

    CAS  PubMed  Google Scholar 

  126. Sakai, H, Hara H, Tsai AG, et al (1999) Changes in resistance vessels during hemorrhagic shock and resuscitation in conscious hamster model. Am J Physiol Heart Circ Physiol 276:H563–H571

    CAS  Google Scholar 

  127. Sakai H, Hara H, Tsai AG, et al (2000) Constriction of resistance arteries determines L-NAME-induced hypertension in a conscious hamster model. Microvasc Res 60:21–27

    Article  CAS  PubMed  Google Scholar 

  128. Sakai H, Hara H, Yuasa M, et al (2000) Molecular dimensions of Hb-based O2 carriers determine constriction of resistance arteries and hypertension. Am J Physiol Heart Circ Physiol 279:H908–H915

    CAS  PubMed  Google Scholar 

  129. Makino N, Suematsu M, Sugiura Y, et al (2001) Altered expression of heme oxygenase-1 in the livers of patients with portal hypertensive diseases. Hepatology 33:32–42

    Article  CAS  PubMed  Google Scholar 

  130. Goda N, Suzuki K, Naito M, et al (1998) Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J Clin Invest 101:604–612

    CAS  PubMed  Google Scholar 

  131. Rudolph AS, Klipper RW, Goins B, et al (1991) In vivo biodistribution of a radiolabeled blood substitute: 99mTc-labeled liposome-encapsulated hemoglobin in an anesthetized rabbit. Proc Natl Acad Sci USA 88:10976–10980

    CAS  PubMed  Google Scholar 

  132. Sou K, Klipper R, Goins B, et al (2003) Pharmacokinetics of the hemoglobin-vesicles (HbV) in rats. Artif Blood 11:117 (Abstract)

    Google Scholar 

  133. Sakai H, Horinouchi H, Tomiyama K, et al (2001) Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. Am J Pathol 159:1079–1088

    CAS  PubMed  Google Scholar 

  134. Sakai H, Horinouchi H, Masada Y, et al (2004) Metabolism of hemoglobin-vesicles (artificial oxygen carriers) and their influence on organ functions in a rat model. Biomaterials 25:4317–4325

    Article  CAS  PubMed  Google Scholar 

  135. Sakai H, Masada Y, Horinouchi H, et al (2003) Daily repeated infusion of Hb-vesicels (HbV) into Wistar rats for two weeks: A preliminary safety study. Artif Blood 11:72 (Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this paper

Cite this paper

Sakai, H., Sou, K., Takeoka, S., Kobayashi, K., Tsuchida, E. (2005). Hemoglobin-Vesicles (HbV) as Artificial Oxygen Carriers. In: Kobayashi, K., Tsuchida, E., Horinouchi, H. (eds) Artificial Oxygen Carrier. Keio University International Symposia for Life Sciences and Medicine, vol 12. Springer, Tokyo. https://doi.org/10.1007/4-431-26651-8_10

Download citation

  • DOI: https://doi.org/10.1007/4-431-26651-8_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-22074-9

  • Online ISBN: 978-4-431-26651-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics