Skip to main content

A Review on Prediction Models for Pesticide Use, Transmission, and Its Impacts

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 257

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 257))

Abstract

The lure of increased productivity and crop yield has caused the imprudent use of pesticides in great quantity that has unfavorably affected environmental health. Pesticides are chemicals intended for avoiding, eliminating, and mitigating any pests that affect the crop. Lack of awareness, improper management, and negligent disposal of pesticide containers have led to the permeation of pesticide residues into the food chain and other environmental pathways, leading to environmental degradation. Sufficient steps must be undertaken at various levels to monitor and ensure judicious use of pesticides. Development of prediction models for optimum use of pesticides, pesticide management, and their impact would be of great help in monitoring and controlling the ill effects of excessive use of pesticides. This paper aims to present an exhaustive review of the prediction models developed and modeling strategies used to optimize the use of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi B (2018) The determinants of cucumber farmers’ pesticide use behaviour in Central Iran: implications for the pesticide use management. J Clean Prod 205:1069–1081

    Article  Google Scholar 

  • Agatz A, Brown CD (2017) Introducing the 2-DROPS model for two-dimensional simulation of crop roots and pesticide within the soil-root zone. Sci Total Environ 586:966–975

    Article  CAS  PubMed  ADS  Google Scholar 

  • Agatz A, Ashauer R, Sweeney P, Brown CD (2020) A knowledge-based approach to designing control strategies for agricultural pests. Agric Syst 183:102865

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, Siddique MA, Rahman M, Bari ML, Ferdousi S (2019) A study on the prevalence of heavy metals, pesticides and microbial contaminants and antibiotics resistance pathogens in raw salad vegetables sold in Dhaka, Bangladesh. Heliyon 5(2):e01205

    Article  PubMed  PubMed Central  Google Scholar 

  • Almakki A, Bilak EJ, Marchandin H, Fajardo PL (2019) Antibiotic resistance in urban runoff. Sci Total Environ 667:64–76

    Article  CAS  PubMed  ADS  Google Scholar 

  • Alves VM, Muratov EN, Zakharov A, Muratov NN, Andrade CH, Tropsha A (2018) Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs and pesticides? Food Chem Toxicol 112:526–534

    Article  CAS  PubMed  Google Scholar 

  • Alves AN, Souza WSR, Borges DL (2020) Cotton pests classification in field-based images using deep residual networks. Comput Electron Agric 174:105488

    Article  Google Scholar 

  • Anlauf R, Schaefer J, Kajitvichyanukul P (2018) Coupling HYDRUS-1D with ArcGIS to estimate pesticide accumulation and leaching risk on a regional basis. J Environ Manag 217:980–990

    Article  Google Scholar 

  • Arisekar U, Shakila RJ, Jeyasekaran G, Shalin R, Kumar P, Malani AH, Rani V (2019) Accumulation of organochlorine pesticide residues in fish, water and sediments in the Thamirabarani river system of southern pensinsular India. Environ Nanotechnol Monitoring Manag 11:100194

    Article  Google Scholar 

  • Asaei H, Jafari A, Loghavi M (2019) Site-specific orchard sprayer equipped with machine vision for chemical usage management. Comput Electron Agric 162:431–439

    Article  Google Scholar 

  • Baan L (2020) Sensitivity analysis of the aquatic pesticide fate models in SYNOPS and their parametrization for Switzerland. Sci Total Environ 715:136881

    Article  PubMed  ADS  Google Scholar 

  • Bagheri A, Bondori A, Allahyari MS, Damalas CA (2019) Modeling farmers’ intention to use pesticides: an expanded version of the theory of planned behaviour. J Environ Manag 248:109291

    Article  Google Scholar 

  • Basir FA, Banerjee A, Ray S (2019) Role of farming awareness in crop pest management – a mathematical model. J Theor Biol 461:59–67

    Article  MathSciNet  PubMed  MATH  ADS  Google Scholar 

  • Benigni R, Serafimova R, Morte JMP, Battistelli CL, Bossa C, Giuliani A, Fioravanzo E, Bassan A, Gatnik MF, Rathman J, Yang C, Szlichtyng AM, Sacher O, Tcheremenskaia O (2020) Evaluation of the applicability of existing (Q)SAR models for predicting the genotoxicity of pesticides and similarity analysis related with genotoxicity of pesticides for facilitating of grouping and read across: An EFSA funded project. Regul Toxicol Pharmacol 114:104658

    Article  CAS  PubMed  Google Scholar 

  • Berg HVD, Gu B, Grenier B, Kohlschmid E, Al-Eryani S, Bezerra HSS, Nagpal BN, Chanda E, Gasimov E, Velayudhan R, Yadav RS (2020) Pesticide lifecycle management in agriculture and public health: where are the gaps? Sci Total Environ 742:140598

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhandari G, Zomer P, Atreya K, Mol HGJ, Yang X, Geissen V (2019) Pesticide residues in Nepalese vegetables and potential health risks. Environ Res 172:511–521

    Article  CAS  PubMed  Google Scholar 

  • Bhandari G, Atreya K, Scheepers PTJ, Geissen V (2020) Concentration and distribution of pesticide residues in soil: non-dietary human health risk assessment. Chemosphere 253:126594

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bolognesi C, Merlo FD (2019) Pesticides: human health effects. In: Encyclopedia of environmental health, 2nd edn. Elsevier, Burlington, pp 118–132

    Chapter  Google Scholar 

  • Boulange J, Watanabe H, Akai S (2017) A Markov Chain Monte Carlo technique for parameter estimation and inference in pesticide fate and transport modeling. Ecol Model 360:270–278

    Article  CAS  Google Scholar 

  • Braun G, Sebesvari Z, Braun M, Kruse J, Amelung W, An NT, Renaud FG (2018) Does sea-dyke construction affect the spatial distribution of pesticides in agricultural soils? – a case study from the Red River Delta, Vietnam. Environ Pollut 243(Part B):890–899

    Article  CAS  PubMed  Google Scholar 

  • Braun G, Braun M, Kruse J, Amelung W, Renaud FG, Khoi CM, Duong MV, Sebesvari Z (2019) Pesticides and antibiotics in permanent rice, alternating rice-shrimp and permanent shrimp systems of the coastal Mekong Delta, Vietnam. Environ Int 127:442–451

    Article  CAS  PubMed  Google Scholar 

  • Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Caffara A, Rinaldi M, Eccel E, Rossi V, Pertot I (2012) Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric Ecosyst Environ 148:89–101

    Article  Google Scholar 

  • Cai J, Xiao D, Lv L, Ye Y (2019) An early warning model for vegetable pests based on multidimensional data. Comput Electron Agric 156:217–226

    Article  Google Scholar 

  • Carrao DB, Habenchus MD, Albuquerque NCP, Silva RM, Lopes NP, Oliveria ARM (2019) In vitro inhibition of human CYP2D6 by the chiral pesticide fipronil and its metabolite fipronil sulfone: prediction of pesticide-drug interactions. Toxicol Lett 313:196–204

    Article  CAS  PubMed  Google Scholar 

  • Castex V, Beniston M, Calanca P, Fleury D, Moreau J (2018) Pest management under climate change: the importance of understanding tritrophic relations. Sci Total Environ 616–617:397–407

    Article  PubMed  ADS  Google Scholar 

  • Ccanccapa A, Masia A, Andreu V, Pico Y (2016) Spatio-temporal patterns of pesticide residues in the Turia and Jucar rivers (Spain). Sci Total Environ 540:200–210

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chakraborty P, Zhang G, Li J, Sivakumar A, Jones KC (2015) Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air-soil exchange. Environ Pollut 204:74–80

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Zhang G, Li J, Sampathkumar P, Balasubramanian T, Kathiresan K, Takahashi S, Subramanian A, Tanabe S, Jones KC (2019) Seasonal variation of atmospheric organochlorine pesticides and polybrominated diphenyl ethers in Parangipettai, Tamil Nadu, India: Implication for atmospheric transport. Sci Total Environ 649:1653–1660

    Article  CAS  PubMed  ADS  Google Scholar 

  • Collier RH (2017) Pest and disease prediction models. In: Encyclopedia of applied plant sciences, vol 3, 2nd edn. Academic Press, Waltham, pp 120–123

    Chapter  Google Scholar 

  • Congdon BS, Coutts BA, Jones RAC, Renton M (2017) Forecasting model for Pea seed-borne mosaic virus epidemics in field pea crops in a Mediterranean-type environment. Virus Res 241:163–171

    Article  CAS  PubMed  Google Scholar 

  • Curutiu C, Lazar V, Chifiriuc MC (2017) Pesticides and antimicrobial resistance: from environmental compartments to animal and human infections. In: New pesticides and soil sensors. Academic Press, Waltham, pp 373–392

    Chapter  Google Scholar 

  • Dashtbozorgi Z, Golmohammadi H, Konoz E (2013) Support vector regression based QSPR for the prediction of retention time of pesticide residues in gas chromatography–mass spectroscopy. Microchem J 106:51–60

    Article  CAS  Google Scholar 

  • Devi PI, Thomas J, Raju RK (2017) Pesticide consumption in India: a spatiotemporal analysis. Agric Econ Res Rev 30(1):163–172

    Article  Google Scholar 

  • Drabova L, Rivera GA, Suchanova M, Schusterova D, Pulkrabova J, Tomaniova M, Kocourek V, Chevallier O, Elliott C, Hajslova J (2019) Food fraud in oregano: pesticide residues as adulteration markers. Food Chem 276:726–734

    Article  CAS  PubMed  Google Scholar 

  • Elahi E, Weijun C, Zhang H, Nazeer M (2019) Agricultural intensification and damages to human health in relation to agrochemicals: application of artificial intelligence. Land Use Policy 83:461–474

    Article  Google Scholar 

  • Elavarasan D, Vincent DR, Sharma V, Zomaya AY, Srinivasan K (2018) Forecasting yield by integrating agrarian factors and machine learning models: a survey. Comp Elect Agric 155:257–282

    Article  Google Scholar 

  • FAO/WHO (2016) The international code of conduct on pesticide management – guidelines on highly hazardous pesticides. Food and Agriculture Organization of the United Nations/World Health Organization, Rome/Geneva

    Google Scholar 

  • FAO/WHO (2019a) Maximum residue limits (MRLs). Codex Alimentarius. International Food Standards. Food and Agriculture Organization of the United Nations/World Health Organization, Rome/Geneva

    Google Scholar 

  • FAO/WHO (2019b) Reports of the joint meeting on pesticide residues. FAO plant production and protection paper series. Food and Agriculture Organization of the United Nations/World Health Organization, Rome/Geneva

    Google Scholar 

  • Farlin J, Galle T, Bayerle M, Pittois D, Braun C, Khabbaz HE, Elsner M, Maloszewski P (2012) Predicting pesticide attenuation in a fractured aquifer using lumped-parameter models. Groundwater 51:276–285. 1–10

    Google Scholar 

  • Farlin J, Galle T, Bayerle M, Pittois D, Braun C, Khabbaz HE, Lallement C, Leopold U, Vanderborght J, Weihermueller L (2013) Using the long-term memory effect of pesticide and metabolite soil residues to estimate field degradation half-life and test leaching predictions. Geoderma 207–208:15–24

    Article  ADS  Google Scholar 

  • Farlin J, Bayerle M, Pittois D, Galle T (2017) Estimating pesticide attenuation from water dating and the ratio of metabolite to parent compound. Groundwater 55:550–557. 1–8

    Article  CAS  Google Scholar 

  • Galimberti F, Moretto A, Papa E (2020) Application of chemometric methods and QSAR models to support pesticide risk assessment starting from ecotoxicological datasets. Water Res 174:115583

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Zhang L, Lu Z, He C, Li Q, Na G (2018) Complex migration of antibiotic resistance in natural aquatic environments. Environ Pollut 232:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Gu C, Yang H, Weng T (2020) Prediction of spatial distribution of invasive alien pests in two-dimensional systems based on a discrete time model. Ecol Eng 143:105673

    Article  Google Scholar 

  • Gierer F, Vaughan S, Slater M, Thompson HM, Elmore JS, Girling RD (2019) A review of the factors that influence pesticide residues in pollen and nectar: future research requirements for optimizing the estimation of pollinator exposure. Environ Pollut 249:236–247

    Article  CAS  PubMed  Google Scholar 

  • Groot M, Ogris N (2019) Short-term forecasting of bark beetle outbreaks on two economically important conifer tree species. For Ecol Manag 450:117495

    Article  Google Scholar 

  • Guardo AD, Finizio A (2016) A moni-modelling approach to manage groundwater risk to pesticide leaching at regional scale. Sci Total Environ 545–546:200–209

    Article  PubMed  Google Scholar 

  • Guzman C, Fenollosa EA, Sahun RM, Boyero JR, Vela JM, Wong E, Jaques JA, Montserrat M (2016) Temperature-specific competition in predatory mites: implications for biological pest control in a changing climate. Agric Ecosyst Environ 216:89–97

    Article  Google Scholar 

  • Hajirahimi Z, Khashei M (2019) Hybrid structures in time series modeling and forecasting: a review. Eng App Artif Intell 86:83–106

    Article  Google Scholar 

  • He L, Xiao K, Zhou C, Li G, Yang H, Li Z, Cheng J (2019) Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna. Ecotoxicol Environ Saf 173:285–292

    Article  CAS  PubMed  Google Scholar 

  • Hong SW, Zhao L, Zhu H (2018) SAAS, a computer program for estimating pesticide spray efficiency and drift of air-assisted pesticide applications. Comput Electron Agric 155:58–68

    Article  Google Scholar 

  • Houbraken M, Habimana V, Senaeve D, Davila EL, Spanoghe P (2017) Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. Sci Total Environ 576:888–894

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huan Z, Xu Z, Luo J, Xie D (2016) Monitoring and exposure assessment of pesticide residues in cowpea (Vigna unguiculata L.Walp) from five provinces of southern China. Regul Toxicol Pharmacol 81:260–267

    Article  CAS  PubMed  Google Scholar 

  • Hussein AS, Beshir S, Taha MM, Shahy EM, Shaheen W, Shafy EAA, Thabet E (2019) Early prediction of liver carcinogenicity due to occupational exposure to pesticides. Mutat Res Genet Toxicol Environ Mutagen 838:46–53

    Article  Google Scholar 

  • Islam MN, Huang L, Siciliano SD (2020) Inclusion of molecular descriptors in predictive models improves pesticide soil-air partitioning estimates. Chemosphere 248:126031

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jiang B, He J, Yang S, Fu H, Li T, Song H, He D (2018) Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues. Artif Intell Agric 1:1–8

    Google Scholar 

  • Jiao L, Dong S, Zhang S, Xie C, Wang H (2020a) AF-RCNN: an anchor-free convolutional neural network for multi-categories agricultural pest detection. Comp Elect Agric 174:1–9

    Article  Google Scholar 

  • Jiao C, Chen L, Sun C, Jiang Y, Zhai L, Liu H, Shen Z (2020b) Evaluating national ecological risk of agricultural pesticides from 2004 to 2017 in China. Environ Pollut 259:113778

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Bluemling B, Mol APJ (2018) Mitigating land pollution through pesticide packages – the case of a collection scheme in Rural China. Sci Total Environ 622–623:502–509

    Article  PubMed  ADS  Google Scholar 

  • Jung JM, Jung S, Byeon DH, Lee WH (2017) Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J Asia-Pacific Biodiv 10(4):532–538

    Article  Google Scholar 

  • Kim KH, Kahir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kumar ADD, Reddy DN (2017) High pesticide use in India: health implications. Health Action 1:7–12

    Google Scholar 

  • Kumar A, Correll R, Grocke S, Bajet C (2010) Toxicity of selected pesticides to freshwater shrimp, Paratya australiensis (Decapoda: Atyidae): use of time series acute toxicity data to predict chronic lethality. Ecotoxicol Environ Saf 73:360–369

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153

    Article  CAS  PubMed  Google Scholar 

  • Kumari D, John S (2019) Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere 224:162–167

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lai W (2017) Pesticide use and health outcomes: evidence from agricultural water pollution in China. J Environ Econ Manag 86:93–120

    Article  Google Scholar 

  • Lammoglia SK, Makowski D, Moeys J, Justes E, Barrisuo E, Mamy L (2017) Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticide losses. Sci Total Environ 580:117–129

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lammoglia SK, Brun F, Quemar T, Moeys J, Barrisuo E, Gabrielle B, Mamy L (2018) Modelling pesticides leaching in cropping systems: effect of uncertainties in climate, agricultural practices, soil and pesticide properties. Environ Model Softw 109:342–352

    Article  Google Scholar 

  • Lee HJ, Kim KY, Hamm SY, Kim M, Kim HK, Oh JE (2019) Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners and pesticides in groundwater from an agricultural area in Korea. Sci Total Environ 659:168–176

    Article  CAS  PubMed  ADS  Google Scholar 

  • Li Z (2018a) A Bayesian generalized log-normal model to dynamically evaluate the distribution of pesticide residues in soil associated with population health risks. Environ Int 121:620–634

    Article  CAS  PubMed  Google Scholar 

  • Li Z (2018b) A health-based regulatory chain framework to evaluate international pesticide groundwater regulations integrating soil and drinking water standards. Environ Int 121:1253–1278

    Article  CAS  PubMed  Google Scholar 

  • Li Z (2018c) The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. Sci Total Environ 639:438–456

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lin G, Ji R, Yao H, Chen R, Yu Y, Wang X, Yang X, Zhu T, Bian H (2020) Fluorescence detection of multiple kinds of pesticides with multi hidden layers neural network algorithm. Optik- Int J Light Electron Optics 211:164632

    Article  CAS  Google Scholar 

  • Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Malaj E, Liber K, Morrissey CA (2020) Spatial distribution of agricultural pesticide use and predicted wetland exposure in the Canadian Prairie Pothole Region. Sci Total Environ 718:134765

    Article  CAS  PubMed  ADS  Google Scholar 

  • Marnasidis S, Stamatelatou K, Verikouki E, Kazantzis K (2018) Assessment of the generation of empty pesticide containers in agricultural areas. J Environ Manag 224:37–48

    Article  Google Scholar 

  • Martin TM, Lilavois CR, Barron MG (2017) Prediction of pesticide acute toxicity using two dimensional chemical descriptors and target species classification. SAR QSAR Environ Res 28(6):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath G, Rao PSC, Mellander PE, Kennedy I, Rose M, Zwieten LV (2019) Real-time forecasting of pesticide concentrations in soil. Sci Total Environ 663:709–717

    Article  CAS  PubMed  ADS  Google Scholar 

  • Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M (2020) Pesticides in the urban environment: a potential threat that knocks at the door. Sci Total Environ 711:134612

    Article  ADS  Google Scholar 

  • Meite F, Zaldivar PA, Crochet A, Wiegert C, Payraudeau S, Imfeld G (2018) Impact of rainfall patterns and frequency on the export of pesticides and heavy metals from agricultural soils. Sci Total Environ 616–617:500–509

    Article  PubMed  ADS  Google Scholar 

  • Mfarrej MFB, Rara FM (2019) Competitive, sustainable natural pesticides. Acta Ecol Sin 39(2):145–151

    Article  Google Scholar 

  • Michael OK, Hogarh JN, Brink PJV (2020) Environmental risk assessment of pesticides currently applied in Ghana. Chemosphere 254:126845

    Article  ADS  Google Scholar 

  • Miller TH, Gallidabino MD, MacRae JI, Owen SF, Bury NR, Barron LP (2019) Prediction of bioconcentration factors in fish and invertebrates using machine learning. Sci Total Environ 648:80–89

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mishra K, Sharma RC, Kumar S (2012) Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicol Environ Saf 76:215–225

    Article  CAS  PubMed  Google Scholar 

  • Mohanty MK, Behera BK, Jena SK, Srikanth S, Mogane C, Samal S, Behera AA (2013) Knowledge attitude and practice of pesticide use among agricultural workers in Puducherry. South India J Forensic Legal Med 20:1028–1031

    Article  Google Scholar 

  • Mol FD, Winter M, Gerowitt B (2018) Weather determines the occurrence of wheat stem base diseases in biogas cropping systems. Crop Prot 114:1–11

    Article  Google Scholar 

  • Mondal R, Mukherjee A, Biswas S, Kole RK (2018) GC-MS/MS determination and ecological risk assessment of pesticides in aquatic system: a case study in Hooghly river basin in West Bengal, India. Chemosphere 206:217–230

    Article  CAS  PubMed  ADS  Google Scholar 

  • Montgomery DC, Jennings CL, Kulahci M (2008) Introduction to time series analysis and forecasting. Wiley, Hoboken

    MATH  Google Scholar 

  • Mubushar M, Aldosari FO, Baig MB, Alotaibi BM, Khan AQ (2019) Assessment of farmers on their knowledge regarding pesticide usage and biosafety. Saudi J Biol Sci 26(7):1903–1910

    Article  PubMed  PubMed Central  Google Scholar 

  • Newbery F, Qi A, Fitt BDL (2016) Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr Opin Plant Biol 32:101–109

    Article  PubMed  Google Scholar 

  • Niell S, Jesus F, Diaz R, Mendoza Y, Notte G, Santos E, Gerez N, Cesio V, Cancela H, Heinzein H (2018) Beehives biomonitor pesticides in agroecosystems: Simple chemical and biological indicators evaluation using Support Vector Machines (SVM). Ecol Indic 91:149–154

    Article  CAS  Google Scholar 

  • Norman JE, Mahler BJ, Nowell LH, Metre PCV, Sandstrom MW, Corbin MA, Qian Y, Pankow JF, Luo W, Fitzgerald NB, Asher WE, McWhirter KJ (2020) Daily stream samples reveal highly complex pesticide occurrence and potential toxicity to aquatic life. Sci Total Environ 715:136795

    Article  CAS  PubMed  ADS  Google Scholar 

  • Osawa T, Yamasaki K, Tabuchi K, Yoshioka A, Ishigooka Y, Sudo S, Takada MB (2018) Climate-mediated population dynamics enhance distribution range expansion in a rice pest insect. Basic Appl Ecol 30:41–51

    Article  Google Scholar 

  • Ouyang W, Cai G, Tysklind M, Yang W, Hao F, Liu H (2017) Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed. Water Res 122:377–386

    Article  CAS  PubMed  Google Scholar 

  • Pagani AP, Ibanez GA (2019) Pesticide residues in fruits and vegetables: high-order calibration based on spectrofluorimetric/pH data. Microchem J 149:104042

    Article  CAS  Google Scholar 

  • Pan X, Dong F, Wu X, Xu J, Liu X, Zheng Y (2019) Progress of the discovery, application and control technologies of chemical pesticides in China. J Integr Agric 18(4):840–853

    Article  CAS  Google Scholar 

  • Pham X, Stack M (2018) How data analytics is transforming agriculture. Bus Horiz 61(1):125–133

    Article  Google Scholar 

  • Pose-Juan E, Sanchez Martin MJ, Andrades MS, Rodriguez-Cruz MS, Hernandez EH (2015) Pesticide residues in vineyard soils in Spain: spatial and temporal distributions. Sci Total Environ 514:351–358

    Article  CAS  PubMed  ADS  Google Scholar 

  • Qian L, Zhang C, Zuo F, Zheng L, Li D, Zhang A, Zhang D (2019) Effects of fertilizers and pesticides on the mineral elements used for the geographical origin traceability of rice. J Food Compos Anal 83:103276

    Article  CAS  Google Scholar 

  • Qu C, Albanese S, Li J, Cicchella D, Zuzolo D, Hope D, Cerino P, Pizzolante A, Doherty AL, Lima A, Vivo BD (2019) Organochlorine pesticides in the soils from Benevento provincial territory, Southern Italy: spatial distribution, air-soil exchange and implications for environmental health. Sci Total Environ 674:159–170

    Article  CAS  PubMed  ADS  Google Scholar 

  • Quaglia G, Joris I, Broekx S, Desmet N, Koopmans K, Vandaele K, Seuntjens P (2019) A spatial approach to identify priority areas for pesticide pollution mitigation. J Environ Manag 246:583–593

    Article  CAS  Google Scholar 

  • Queyrel W, Habets F, Blanchoud H, Ripoche D, Launay M (2016) Pesticide fate modelling in soils with the crop model STICS: feasibility for assessment of agricultural practices. Sci Total Environ 542:782–802

    Article  ADS  Google Scholar 

  • Rajcevic SM, Rubino FM, Colosio C (2020) Establishing health-based biological exposure limits for pesticides: a proof of principle study using mancozeb. Regul Toxicol Pharmocol 115:104689

    Article  Google Scholar 

  • Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M (2019) Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance? Sci Total Environ 654:177–189

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rangasamy K, Athiappan M, Devarajan N, Parray JA (2017) Emergence of multi drug resistance among soil bacteria exposing to insecticides. Microb Pathog 105:153–165

    Article  CAS  PubMed  Google Scholar 

  • Rangasamy K, Athiappan M, Devarajan N, Samykannu G, Parray JA, Aruljothi KN, Shameem N, Alqarawi AA, Hashem A, Abd Allah EF (2018) Pesticide degrading natural multidrug resistance bacterial flora. Microb Pathog 114:304–310

    Article  CAS  PubMed  Google Scholar 

  • Sabarwal A, Kumar K, Singh RP (2018) Hazardous effects of chemical pesticides on human health – cancer and other associated disorders. Environ Toxicol Phar 63:103–114

    Article  CAS  Google Scholar 

  • Sanganyado E, Gwenzi W (2019) Antibiotic resistance in drinking water systems: occurrence, removal and human health risks. Sci Total Environ 669:785–797

    Article  CAS  PubMed  ADS  Google Scholar 

  • Santos GG, Scheiber M, Pilz J (2020) Spatial interpolation methods to predict airborne pesticide drift deposits on soils using knapsack sprayers. Chemosphere 258:127231

    Article  ADS  Google Scholar 

  • Schreinemachers P, Grovermann C, Praneetvatakul S, Heng P, Nguyen TTC, Buntong B, Le NT, Pinn T (2020) How much is too much? Quantifying pesticide overuse in vegetable production in Southeast Asia. J Clean Prod 244:118738

    Article  Google Scholar 

  • Sharma R, Peshin R (2016) Impact of integrated pest management of vegetables on pesticide use in subtropical Jammu, India. Crop Prot 84:105–112

    Article  Google Scholar 

  • Shein EV, Belik AA, Kokoreva AA, Kolupaeva VN, Pletenev PA (2017) Prediction of pesticide migration in soils: the role of experimental soil control. Moscow Univ Soil Sci Bull 72(4):185–190

    Article  Google Scholar 

  • Shoda ME, Stone WW, Nowell LH (2016) Prediction of pesticide toxicity in Midwest streams. J Environ Qual 45:1856–1864

    Article  CAS  PubMed  Google Scholar 

  • Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils – a hidden reality unfolded. Sci Total Environ 653:1532–1545

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sousa ES, Schneider MP, Pinto L, Araujo MCU, Gomes AA (2020) Chromatographic quantification of seven pesticide residues in vegetables: univariate and multiway calibration comparison. Microchem J 152:104301

    Article  CAS  Google Scholar 

  • Steingrimsdottir MM, Peterson A, Fantke P (2018) A screening framework for pesticide substitution in agriculture. J Clean Prod 192:306–315

    Article  CAS  Google Scholar 

  • Stergiopoulos C, Makarouni D, Kakoulidou AT, Petropoulou MO, Tsopelas F (2019) Immobilized artificial membrane chromatography as a tool for the prediction of ecotoxicity of pesticides. Chemosphere 224:128–139

    Article  CAS  PubMed  ADS  Google Scholar 

  • Subash SP, Chand P, Pavithra S, Balaji SJ, Pal S (2017) Pesticide use in Indian agriculture: trends, market structure and policy issues. Policy in brief. Indian Council of Agricultural Research, New Delhi, pp 1–5

    Google Scholar 

  • Sybertz A, Ottermanns R, Schaffer A, Starke BS, Daniels B, Frische T, Bar S, Ullrich C, Nickoll MR (2020) Simulating spray series of pesticides in agricultural practice reveals evidence for accumulation of environmental risk in soil. Sci Total Environ 710:135004

    Article  CAS  PubMed  ADS  Google Scholar 

  • Szekeres E, Chiriac CM, Baricz A, Nagy TS, Lung I, Soran ML, Rudi K, Dragos N, Coman C (2018) Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ Pollut 236:734–744

    Article  CAS  PubMed  Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52(3):296–306

    Article  Google Scholar 

  • UN/FAO (2017) The future of food and agriculture: trends and challenges. Summary Version: 1–47. www.fao.org/publications

  • UNICEF (2018) Understanding the impacts of pesticides on children: a discussion paper. UNICEF, New York

    Google Scholar 

  • Utami RR, Geerling GW, Salami IRS, Notodarmojo S, Ragas AMJ (2020) Environmental prioritization of pesticide in the Upper Citarum River Basin, Indonesia, using predicted and measured concentrations. Sci Total Environ 738:140130

    Article  CAS  PubMed  ADS  Google Scholar 

  • Varjani S, Kumar G, Rene ER (2019) Developments in biochar application for pesticide remediation: current knowledge and future research directions. J Environ Manag 232:505–513

    Article  CAS  Google Scholar 

  • Vaz WF, D’Oliveira GDC, Perez CN, Neves BJ, Napolitano HB (2020) Machine learning prediction of the potential pesticide applicability of three dihydroquinoline derivatives: syntheses, crystal structures and physical properties. J Mol Struct 1206:127732

    Article  CAS  Google Scholar 

  • Villamizar ML, Brown CD (2017) A modelling framework to simulate river flow and pesticide loss via preferential flow at the catchment scale. Catena 149(1):120–130

    Article  Google Scholar 

  • Villamizar ML, Stoate C, Biggs J, Morris C, Szczur J, Brown CD (2020) Comparison of technical and systems-based approaches to managing pesticide contamination in surface water catchments. J Environ Manag 260:110027

    Article  CAS  Google Scholar 

  • VoPham T, Wilson JP, Ruddell D, Rashed T, Brooks MM, Yuan JM, Talbott EO, Chang CCH, Weissfeld JL (2015) Linking pesticides and human health: a geographic information system (GIS) and Landsat remote sensing method to estimate agricultural pesticide exposure. Appl Geogr 62:171–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Tao J, Yang C, Chu M, Lam H (2017) A general framework incorporating knowledge, risk perception and practices to eliminate pesticide residues in food: a structural equation modelling analysis based on survey data of 986 Chinese farmers. Food Control 80:143–150

    Article  Google Scholar 

  • Wang R, Yuan Y, Yen H, Grieneisen M, Arnold J, Wang D, Wang C, Zhang M (2019a) A review of pesticide fate and transport simulation at water shed level using SWAT: current status and research concerns. Sci Total Environ 669:512–516

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wang X, Zhou L, Zhang X, Luo F, Chen Z (2019b) Transfer of pesticide residue during tea brewing: understanding the effects of pesticide’s physico-chemical parameters on its transfer behaviour. Food Res Int 121:776–784

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang S, Shan F, Sun Y, Liu S (2020a) Missing data recovery combined with Parallel factor analysis model for eliminating Rayleigh scattering in the process of detecting pesticide mixture. Spectrochim Acta A Mol Biomol Spectrosc 232:118187

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang J, Shan F, Wang Y, Cheng Q, Liu N (2020b) A GA-BP method of detecting carbamate pesticide mixture based on three-dimensional fluorescence spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 224:117396

    Article  CAS  PubMed  Google Scholar 

  • WHO (2017) Guidelines for drinking water quality, 4th edition incorporating the first addendum. World Health Organization, Geneva

    Google Scholar 

  • WHO (2019) Preventing disease through healthy environments. In: Exposure to highly hazardous pesticides: a major public health concern. World Health Organization, Geneva

    Google Scholar 

  • WHO/FAO (2014) International code of conduct on pesticide management. Food and Agriculture Organization of the United Nations/World Health Organization, Rome/Geneva

    Google Scholar 

  • Wildemeersch M, Franklin O, Seidl R, Rogelj J, Moorthy I, Thurner S (2019) Modelling the multi-scaled nature of pest outbreaks. Ecol Model 409:108745

    Article  Google Scholar 

  • Wrzesien M, Treder W, Klamkowski K, Rudnicki WR (2019) Prediction of the apple scab using machine learning and simple weather stations. Comp Electron Agric 161:252–259

    Article  Google Scholar 

  • Xie H, Wang X, Chen J, Li X, Jia G, Zou Y, Zhang Y, Cui Y (2019) Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China. Sci Total Environ 656:946–951

    Article  CAS  PubMed  ADS  Google Scholar 

  • Xu D, Li X, Jin Y, Zhuo Z, Yang H, Hu J, Wang R (2020a) Influence of climatic factors on the potential distribution of pest Heortia vitessoides Moore in China. Global Ecol Conserv 23:e01107

    Article  Google Scholar 

  • Xu Y, Liu S, Lu B, Wang Z (2020b) Acute toxicity dataset for QSAR modeling and predicting missing data of six pesticides. Data Brief 29:105150

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yang LN, Peng L, Zhang LM, Zhang L, Yang S (2009) A prediction model for population occurrence of paddy stem borer (Scirpophaga incertulas), based on back propagation artificial neural network and principal components analysis. Comput Electron Agric 68:200–206

    Article  ADS  Google Scholar 

  • Yang L, Wang Y, Chang J, Pan Y, Wei R, Li J, Wang H (2020a) QSAR modeling the toxicity of pesticides against Americamysis bahia. Chemosphere 258:127217

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yang L, Wang Y, Hao W, Chang J, Pan Y, Li J, Wang H (2020b) Modeling pesticides toxicity to Sheepshead minnow using QSAR. Ecotoxicol Environ Saf 193:110352

    Article  CAS  PubMed  Google Scholar 

  • Yuan YY, Wang ST, Liu SY, Cheng Q, Wang ZF, Kong DM (2020) Green approach for simultaneous determination of multi-pesticide residue in environmental water samples using excitation-emission matrix fluorescence and multivariate calibration. Spectrochim Acta A Mol Biomol Spectrosc 228:117801

    Article  CAS  PubMed  Google Scholar 

  • Zdravkovic M, Antovic A, Veselinovic JB, Sokolovic D, Veselinovic AM (2018) QSPR in forensic analysis – the prediction of retention time of pesticide residues based on the Monte Carlo method. Talanta 178:656–662

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Goh KS (2015) Evaluation of three models for simulating pesticide runoff from irrigated agricultural fields. J Environ Qual 44(6):1809–1820

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhang QQ, Zhang SX, Xing C, Ying GG (2020) Emission estimation and fate modelling of three typical pesticides in Dongjiang River basin, China. Environ Pollut 258:113660

    Article  CAS  PubMed  Google Scholar 

  • Zhan-Qi R, Zhen-Hong R, Hai-Yan J (2018) Identification of different concentrations pesticide residues of dimethoate on spinach leaves by hyperspectral image technology. IFAC-PapersOnLine 51(17):758–763

    Article  Google Scholar 

Download references

Declarations

Funding (information that explains whether and by whom the research was supported): The research received no funding.

Conflicts of interest/Competing interests (include appropriate disclosures): The authors declare that they no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material (data transparency): Not applicable.

Code availability (software application or custom code): Not applicable.

Authors’ contributions (optional: please review the submission guidelines from the journal whether statements are mandatory): Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Prem Kumar Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilbert, E.P.K., Edwin, L. (2021). A Review on Prediction Models for Pesticide Use, Transmission, and Its Impacts. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 257. Reviews of Environmental Contamination and Toxicology, vol 257. Springer, Cham. https://doi.org/10.1007/398_2020_64

Download citation

Publish with us

Policies and ethics