Skip to main content

Effects of Dissolved Organic Matter on the Bioavailability of Heavy Metals During Microbial Dissimilatory Iron Reduction: A Review

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 257

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 257))

Abstract

Dissolved organic matter (DOM), a type of mixture containing complex structures and interactions, has important effects on environmental processes such as the complexation and interface reactions of soil heavy metals. Furthermore, microbial dissimilatory iron reduction (DIR), a key process of soil biogeochemical cycle, is closely related to the migration and transformation of heavy metals and causes the release of DOM by carbon-ferrihydrite associations. This chapter considers the structural properties and characterization techniques of DOM and its interaction with microbial dissimilated iron. The effect of DOM on microbial DIR is specifically manifested as driving force properties, coprecipitation, complexation, and electronic shuttle properties. The study, in addition, further explored the influence of pH, microorganisms, salinity, and light conditions, mechanism of DOM and microbial DIR on the toxicity and bioavailability of different heavy metals. The action mechanism of these factors on heavy metals can be summarized as adsorption coprecipitation, methylation, and redox. Based on the findings of the review, future research is expected to focus on: (1) The combination of DOM functional group structure analysis with high-resolution mass spectrometry technology and electrochemical methods to determine the electron supply in the mechanism of DOM action on DIR; (2) Impact of DOM on differences in structure and functions of plant rhizosphere in heavy metal contaminated soil; and (3) Bioavailability of DOM-dissociative iron-reducing bacteria-heavy metal ternary binding on rhizosphere heavy metals under dynamic changes of water level from the perspective of the differences in DOM properties, such as polarity, molecular weight, and functional group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D-EEM:

Three-dimensional fluorescence excitation emission matrix

AQDS:

Anthraquinone-2,6-disulphonate

AQS:

Anthraquinone-2-sulfonate

As (III):

Trivalent arsenic

As (V):

Pentavalent arsenic

As:

Arsenic

C:

Carbon

C=H:

Carbon-hydrogen bond

C=O:

Carbon-oxygen bond

Cd:

Cadmium

CH3Hg:

Monomethylmercury

Cr (III):

Trivalent chromium

Cr (VI):

Hexavalent chromium

Cr:

Chromium

Cu:

Copper

DIR:

Dissimilatory iron reduction

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matter

DOM*:

DOM free radicals

EA:

Elemental analysis

EDTA:

Ethylene diamine tetraacetic acid

EPS:

Extracellular polymers substances

ESR:

Electron spin resonance

FA:

Fulvic acid

Fe (II):

Iron(II)

Fe (III):

Iron(III)

FeS:

Iron sulfide

FFFF:

Flow field flow fractionation

FRI:

Fluorescence regional integration

FT-ICR-MS:

Fourier transform ion cyclotron resonance mass spectrometry

FTIR:

Fourier transform infrared

H:

Hydrogen

H2S:

Hydrogen sulfide

HA:

Humic acid

Hg:

Mercury

HgCl2:

Mercury chloride

HgS:

Mercury sulfite

HgSO4:

Mercury sulfate

HPIA:

Hydrophilic acidic organic matter

HPIB:

Hydrophilic base organic matter

HPIN:

Hydrophilic neutral organic matter

HPOA:

Hydrophobic acidic organic matter

HPOB:

Hydrophobic basic organic matter

HPON:

Hydrophobic neutral organic matter

IHSS:

International Humus Association

MeHg:

Methylmercury

N:

Nitrogen

NaAc:

Sodium acetate

N-H:

Nitrogen-hydrogen bond

Ni:

Nickel

NMR:

Nuclear magnetic resonance spectroscopy

NO3-:

Nitrate ion

O:

Oxygen

O2•:

Molecular oxygen free radicals

P:

Phosphorus

PARAFAC:

Parallel factor

S:

Sulfur

S2-:

Sulfite

SO42-:

Sulfate ion

SOM:

Self-organizing map

TOC:

Total organic carbon

UC:

Ultracentrifugation

UV-Vis:

Ultraviolet and visible spectrometry

Zn:

Zinc

References

  • Araújo E, Strawn DG, Morra M, Moore A, Ferracciú ALR (2019) Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environ Pollut 246:1020–1026

    PubMed  Google Scholar 

  • Bai HC, Wei SQ, Jiang ZM, He MJ, Ye BY, Liu GY (2019) Pb (II) bioavailability to algae (Chlorella pyrenoidosa) in relation to its complexation with humic acids of different molecular weight. Ecotoxicol Environ Saf 167:1–9

    PubMed  Google Scholar 

  • Bauer M, Heitmann T, Macalady DL, Blodau C (2007) Electron transfer capacities and reaction kinetics of peat dissolved organic matter. Environ Sci Technol 41(1):139–145

    CAS  PubMed  ADS  Google Scholar 

  • Benner R, Amon RMW (2015) The size-reactivity continuum of major bioelements in the ocean. Annu Rev Mar Sci 7:185–205

    ADS  Google Scholar 

  • Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64(11):4507–4512

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Bonneville S, Behrends T, Van Cappellen P, Hyacinthe C, Röling WFM (2006) Reduction of Fe(III) colloids by Shewanella putrefaciens: a kinetic mode. Geochim Cosmochim Acta 70:5842–5854

    CAS  ADS  Google Scholar 

  • Borggaard OK, Holm PE, Strobel BW (2019) Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review. Geoderma 343:235–246

    CAS  ADS  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113(3–4):357–380

    CAS  ADS  Google Scholar 

  • Chen C, Thompson A (2018) Ferrous iron oxidation under varying pO2 levels: the effect of Fe(III)/Al(III) oxide minerals and organic matter. Environ Sci Technol 52(2):597–606

    CAS  PubMed  ADS  Google Scholar 

  • Chen XS, Jiang T, Lu S, Wei SQ, Wang DY, Yan JL (2016) Three-dimensional fluorescence spectral characteristics of different molecular weight fractionations of dissolved organic matter in the water-level fluctuation zones of three gorges reservoir areas. Environ Sci 37(3):884–892. (in Chinese)

    Google Scholar 

  • Chen Z, Wang Y, Jiang X, Fu D, Xia D, Wang HT, Dong GW, Li QB (2017) Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. Sci Total Environ 574(574):1684–1694

    CAS  PubMed  ADS  Google Scholar 

  • Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769

    CAS  PubMed  ADS  Google Scholar 

  • Cinzia DV, Alessandro P, Serena FU (2008) Dissolved organic carbon variability in a shallow system (Gulf of Trieste, northern Adriatic Sea). Estuar Coast Shelf Sci 78(2):280–290

    Google Scholar 

  • Cooper CA, Tait T, Gray H, Cimprich G, Santore RC, McGeer JC, Wood CM, Smith DC (2014) Influence of salinity and dissolved organic carbon on acute Cu toxicity to the rotifer Brachionus plicatilis. Environ Sci Technol 48(2):1213–1221

    CAS  PubMed  ADS  Google Scholar 

  • Cuss CW, Guéguen C (2016) Analysis of dissolved organic matter fluorescence using self-organizing maps: mini-review and tutorial. Anal Methods 8(4):716–725

    Google Scholar 

  • Cuss CW, McConnell SM, Guéguen C (2016) Combining parallel factor analysis and machine learning for the classification of dissolved organic matter according to source using fluorescence signatures. Chemosphere 155:283–291

    CAS  PubMed  ADS  Google Scholar 

  • Dai X, Li P, Tu J, Zhang R, Wei D, Li B, Wang Y, Jiang Z (2016) Evidence of arsenic mobilization mediated by an indigenous iron reducing bacterium from high arsenic groundwater aquifer in Hetao Basin of Inner Mongolia, China. Int Biodeterior Biodegradation 128:22–27

    Google Scholar 

  • Dong X, Ma LQ, Gress J, Harrisa W, Li YC (2014) Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar. J Hazard Mater 267:62–70

    CAS  PubMed  Google Scholar 

  • Eusterhues K, Wagner FE, Hausler W, Hanzlik M, Knicker H, Totsche KU, Gel-Knabner IK, Schwertmann U (2008) Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy. Environ Sci Technol 42:7891–7897

    CAS  PubMed  ADS  Google Scholar 

  • Fuentes A, Lloréns M, Sáez J, Isabel AM, Ortuño JF, Meseguer VF (2008) Comparative study of six different sludges by sequential speciation of heavy metals. Bioresour Technol 99:517–525

    CAS  PubMed  Google Scholar 

  • Fulda B, Voegelin A, Kretzschmar R (2013) Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ Sci Technol 47:12775–12783

    CAS  PubMed  ADS  Google Scholar 

  • Gaberell M, Chin YP, Hug SJ, Sulzberger B (2003) Role of dissolved organic matter composition on the Photoreduction of Cr(VI) to Cr(III) in the presence of iron. Environ Sci Technol 37(19):4403–4409

    CAS  PubMed  ADS  Google Scholar 

  • Goldberg SJ, Nelson CE, Viviani DA, Shulse CN, Church MJ (2017) Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean. Environ Microbiol 19:3450–3464

    CAS  PubMed  Google Scholar 

  • Gong YF, Song J, Ren HT, Han X (2015) Comparison of Cr(VI) removal by activated sludge and dissolved organic matter (DOM): importance of UV light. Environ Sci Pollut Res 22(23):18487–18494

    CAS  Google Scholar 

  • Gu LP, Huang B, Xu ZX, Ma XD, Pan XJ (2016) Dissolved organic matter as a terminal electron acceptor in the microbial oxidation of steroid estrogen. Environ Pollut 218:26–33

    CAS  PubMed  Google Scholar 

  • Guo H, Liu C, Lu H, Wanty RB, Wang J, Zhou Y (2013) Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an iron isotope approach. Geochim Cosmochim Acta 112:130–145

    CAS  ADS  Google Scholar 

  • Han DS, Orillano M, Khodary A, Duan YH, Batchelor B, Abdel-Wahab A (2014) Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg (II)) from water. Water Res 53:310–321

    CAS  PubMed  Google Scholar 

  • He QX, Yu LP, Li JB, He D, Cai XX, Zhou SG (2019) Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction. Sci Total Environ 688:664–672

    CAS  PubMed  ADS  Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly- uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    CAS  Google Scholar 

  • Hellal J, Guédron S, Huguet L, Schäfer J, Laperche V, Joulian C, Lanceleur L, Burnol A, Ghestem JP, Garrido F, Battaglia-Brunet F (2015) Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: a column study to mimic reactive transfer in an anoxic aquifer. J Contam Hydrol 180:56–68

    CAS  PubMed  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969

    ADS  Google Scholar 

  • Hill JR, O’Driscoll NJ, Lean DRS (2009) Size distribution of methylmercury associated with particulate and dissolved organic matter in freshwaters. Sci Total Environ 408(2):408–414

    CAS  PubMed  ADS  Google Scholar 

  • Holmes DE, Finneran KT, O’Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68(5):2300–2306

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Huang DY, Zhuang L, Cao WD, Xu W, Zhou SG, Li FB (2010) Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction. J Soils Sediments 10:722–729

    CAS  Google Scholar 

  • Huang H, Jia Y, Sun GX, Zhu YG (2012) Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environ Sci Technol 46:2163–2168

    CAS  PubMed  ADS  Google Scholar 

  • Huang B, Gu LP, He H, Xu ZX, Pan XJ (2016) Enhanced biotic and abiotic transformation of Cr(VI) by quinone-reducing bacteria/dissolved organic matters/Fe(III) in anaerobic environment. Environ Sci Process Impacts 18:1185–1192

    CAS  PubMed  Google Scholar 

  • Huguet A, Vacher L, Saubusse S (2010) New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Org Geochem 41(6):595–610

    CAS  Google Scholar 

  • Impellitteri CA, Lu YF, Saxe JK, Allen HE, Peijnenburg WJGM (2002) Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environ Int 28:401–410

    CAS  PubMed  Google Scholar 

  • Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42:3563–3569

    CAS  PubMed  ADS  Google Scholar 

  • Jones AM, Collins RN, Rose J, Waite TD (2009) The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochim Cosmochim Acta 73:4409–4422

    CAS  ADS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB, Lundberg E, Andersson A, Björn E (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624

    CAS  PubMed  ADS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    CAS  ADS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kim HB, Kima JG, Choi JH, Kwon E, Baek K (2019) Photo-induced redox coupling of dissolved organic matter and iron in biochars and soil system: enhanced mobility of arsenic. Sci Total Environ 689:1037–1043

    CAS  PubMed  ADS  Google Scholar 

  • Klüpfel L, Keiluweit M, Kleber M, Sander M (2014) Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol 48(10):5601–5611

    PubMed  ADS  Google Scholar 

  • Kowalczuk P, Durako MJ, Young H (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic bight with use of PARAFAC model: interannual variability. Mar Chem 113(3/4):182–196

    CAS  Google Scholar 

  • Kulkarni HV, Mladenov N, McKnight DM, Zheng Y, Kirk MF, Nemergut DR (2018) Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction. Sci Total Environ 615:1390–1395

    CAS  PubMed  ADS  Google Scholar 

  • Lamelas C, Wilkinson KJ, Slaveykova VI (2005) Influence of the composition of natural organic matter on Pb bioavailability to microalgae. Environ Sci Technol 39(16):6109–6116

    CAS  PubMed  ADS  Google Scholar 

  • Lee YP, Fujii M, Terao K, Kikuchi T, Yoshimura C (2016) Effect of dissolved organic matter on Fe(II) oxidation in natural and engineered waters. Water Res 103:160–169

    PubMed  Google Scholar 

  • Lee S, Kim DH, Kim KW (2018) The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. Chemosphere 194:515–522

    CAS  PubMed  ADS  Google Scholar 

  • Leenheer JA, Noyes TI, Rostad CE, Davisson ML (2004) Characterization and origin of polar dissolved organic matter from the Great Salt Lake. Biogeochemistry 69(1):125–141

    CAS  Google Scholar 

  • Li T, Tao Q, Liang C, Shohag MJI, Yang XE, Sparks DL (2013) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255

    CAS  PubMed  Google Scholar 

  • Li CC, Yi XY, Dang Z, Yu H, Zeng T, Wei CH, Feng CH (2016) Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1. Chemosphere 144:2065–2072

    CAS  PubMed  ADS  Google Scholar 

  • Li D, Xie LT, Carvan-III MJ, Guo LD (2019) Mitigative effects of natural and model dissolved organic matter with different functionalities on the toxicity of methylmercury in embryonic zebrafish. Environ Pollut 252:616–626

    CAS  PubMed  Google Scholar 

  • Liu P, Ptacek CJ, Blowes DW (2019) Mercury complexation with dissolved organic matter released from thirty-six types of biochar. Bull Environ Contam Toxicol 103:175–180

    CAS  PubMed  Google Scholar 

  • Liu H, Li P, Wang HL, Qin C, Tan T, Shi B, Zhang GL, Jiang Z, Wang YH, Hasan SZ (2020) Arsenic mobilization affected by extracellular polymeric substances (EPS) of the dissimilatory iron reducing bacteria isolated from high arsenic groundwater. Sci Total Environ 735:139501. https://doi.org/10.1016/j.scitotenv.2020.139501

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lovley DR, Fraga JL, Coates JD, Blunt-harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1(1):89–98

    CAS  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn (IV) reduction. Adv Microb Physiol 49:219–286

    CAS  PubMed  Google Scholar 

  • Luo HW, Yin X, Jubb AM, Chen HM, Lu X, Zhang WH, Lin H, Yu HQ, Liang LY, Sheng GP, Gu BH (2017) Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environ Pollut 220:1359–1365

    CAS  PubMed  Google Scholar 

  • Ma HZ, Allen HE, Yin YJ (2001) Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res 35(4):985–996

    CAS  PubMed  Google Scholar 

  • Mao JD, Kong XQ, Schmidt-Rohr K, Pignatello JJ, Perdue EM (2012) Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. Environ Sci Technol 46(11):5806–5814

    CAS  PubMed  ADS  Google Scholar 

  • Mazrui NM, Jonsson S, Thota S (2016) Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochim Cosmochim Acta 194:153–162

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • McCurry DL, Speth TF, Pressman JG (2012) Lyophilization and reconstitution of reverse-osmosis concentrated natural organic matter from a drinking water source. J Environ Eng 138(4):402–410

    CAS  Google Scholar 

  • McDowell WH (2003) Dissolved organic matter in soils future directions and unanswered questions. Geoderma 113:179–186

    CAS  ADS  Google Scholar 

  • Meng Y, Zhao ZW, Burgos WD, Li Y, Zhang B, Wang YH, Liu WB, Sun LJ, Lin LM, Luan FB (2018) Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1. Sci Total Environ 640–641:591–598

    PubMed  ADS  Google Scholar 

  • Morita Y, Yamagata K, Oota A, Ooki A, Isoda Y, Kuma K (2017) Subarctic wintertime dissolved iron speciation driven by thermal constraints on Fe(II) oxidation, dissolved organic matter and stream reach. Geochim Cosmochim Acta 215:33–50

    CAS  ADS  Google Scholar 

  • Muehe EM, Adaktylou IJ, Obst M, Zeitvogel F, Behrens S, Planer-Friedrich B, Kraemer U, Kappler A (2013) Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil. Environ Sci Technol 47:13430–13439

    CAS  PubMed  ADS  Google Scholar 

  • Navalon S, Alvaro M, Alcaina I, Garcia H (2010) Multi-method characterization of DOM from the Turia river (Spain). Appl Geochem 25(11):1632–1643

    CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2013) Molecular characterization of dissolved organic matter (DOM): a critical review. Anal Bioanal Chem 405(1):109–124

    CAS  PubMed  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68(5):2294–2299

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    CAS  PubMed  ADS  Google Scholar 

  • Nurmi JT, Tratnyek PG (2002) Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environ Sci Technol 36:617–624

    CAS  PubMed  ADS  Google Scholar 

  • Ouellet A, Catana D, Plouhinec JB, Lucotte M, Gélinas Y (2008) Elemental, isotopic, and spectroscopic assessment of chemical fractionation of dissolved organic matter sampled with a portable reverse osmosis system. Environ Sci Technol 42(7):2490–2495

    CAS  PubMed  ADS  Google Scholar 

  • Pan WN, Kan JJ, Inamdar S, Chen CM, Sparks D (2016) Dissimilatory microbial iron reduction release DOC (dissolved organic carbon) from carbon-ferrihydrite association. Soil Biol Biochem 103:232–240

    CAS  Google Scholar 

  • Poggenburg C, Mikutta R, Schippers A, Dohrmann R, Guggenberger G (2018) Impact of natural organic matter coatings on the microbial reduction of iron oxides. Geochim Cosmochim Acta 224:223–248

    CAS  ADS  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter – a review. Chemosphere 55:319–331

    CAS  PubMed  ADS  Google Scholar 

  • Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78(4):913–921

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Royer RA, Burgos WD, Fisher AS, Unz RF, Dempsey BA (2002) Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Environ Sci Technol 36:1939–1946

    CAS  PubMed  ADS  Google Scholar 

  • Santos PS, Otero M, Duarte RM, Duarte AC (2009) Spectroscopic characterization of dissolved organic matter isolated from rainwater. Chemosphere 74(8):1053–1061

    CAS  PubMed  ADS  Google Scholar 

  • Satoh Y, Kikuchi K, Satoh Y, Fujimoto H (2009) Reverse process of coprecipitation of dissolved organic carbon with Fe(III) precipitates in a lake. Limnology 10:131–134

    CAS  Google Scholar 

  • Schwede-Thomas SB, Chin YP, Dria KJ, Hatcher P, Kaiser E, Sulzberger B (2005) Characterizing the properties of dissolved organic matter isolated by XAD and C18 solid phase extraction and ultrafiltration. Aquat Sci 67(1):61–71

    CAS  Google Scholar 

  • Serkiz SM, Perdue EM (1990) Isolation of dissolved organic matter from the suwannee river using reverse-osmosis. Water Res 24(7):911–916

    CAS  Google Scholar 

  • Shi W, Jin ZF, Hu SY, Fang XM, Li FL (2017) Dissolved organic matter affects the bioaccumulation of copper and lead in Chlorella pyrenoidosa: a case of long-term exposure. Chemosphere 174:447–455

    CAS  PubMed  ADS  Google Scholar 

  • Simjouw JP, Minor EC, Mopper K (2005) Isolation and characterization of estuarine dissolved organic matter: comparison of ultrafiltration and C18 solid-phase extraction techniques. Mar Chem 96(3/4):219–235

    CAS  Google Scholar 

  • Skoog AC, Arias-Esquivel VA (2009) The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese. Sci Total Environ 407(23):6085–6092

    CAS  PubMed  ADS  Google Scholar 

  • Sodano M, Lerda C, Nistico R, Martin M, Magnacca G, Celi L, Said-Pullicino D (2017) Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma 307:19–29

    CAS  ADS  Google Scholar 

  • Song FH, Wu FC, Feng WY, Tang Z, Giesy JP, Guo F, Shi D, Liu XF, Qin N, Xing BH, Bai YC (2018) Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions. J Environ Sci (China) 75:116–125

    Google Scholar 

  • Song FH, Wu FC, Feng WY, Liu SS, He J, Li TT, Zhang J, Wu AM, Amarasiriwardena D, Xing BH, Bai YC (2019) Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy. Chemosphere 225:507–516

    CAS  PubMed  ADS  Google Scholar 

  • Soong JL, Calderón FJ, Betzen J, Francesca Cotrufo M (2014) Quantification and FTIR characterization of dissolved organic carbon and total dissolved nitrogen leached from litter: a comparison of methods across litter types. Plant Soil 385:125–137

    CAS  Google Scholar 

  • Spencer RGM, Aiken GR, Dyda RY, Butler KD, Bergamaschi BA, Hernes PJ (2010) Comparison of XAD with other dissolved lignin isolation techniques and a compilation of analytical improvements for the analysis of lignin in aquatic settings. Org Geochem 41(5):445–453

    CAS  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis : a tutorial. Limnol Oceanogr Methods 6:572–579

    CAS  Google Scholar 

  • Tang ZR, Huang CH, Tan WB, He XS, Zhang H, Li D, Xi BD (2018) Electron transfer capacities of dissolved organic matter derived from swine manure based on electrochemical method. Chin J Anal Chem 46(3):422–431

    CAS  Google Scholar 

  • Timko SA, Gonsior M, Cooper WJ (2015) Influence of pH on fluorescent dissolved organic matter photo-degradation. Water Res 85:266–274

    CAS  PubMed  Google Scholar 

  • Tor JM, Lovley DR (2001) Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ Microbiol 3(4):281–287

    CAS  PubMed  Google Scholar 

  • Trump VJI, Sun Y, Coates JD (2006) Microbial interactions with humic substances. Adv Appl Microbiol 60:55–96

    PubMed  Google Scholar 

  • Valenzuela EI, Avendaño KA, Balagurusamy N, Arriaga S, Nieto-Delgado C, Thalasso F, Cervantes FJ (2019) Electron shuttling mediated by humic substances fuels anaerobic methane oxidation and carbon burial in wetland sediments. Sci Total Environ 650:2674–2684

    CAS  PubMed  ADS  Google Scholar 

  • Vazquez E, Amalfitano S, Fazi S, Butturini A (2011) Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 102(1–3):59–72

    Google Scholar 

  • Vermeire ML, Bonneville S, Stenuit B, Delvaux B, Cornélis JT (2019) Is microbial reduction of Fe(III) in podzolic soils influencing C release? Geoderma 340:1–10

    CAS  ADS  Google Scholar 

  • Wang XD, Chen XN, Liu S, Ge XZ (2010) Effect of molecular weight of dissolved organic matter on toxicity and bioavailability of copper to lettuce. J Environ Sci (China) 22(12):1960–1965

    CAS  Google Scholar 

  • Wang N, Xue XM, Juhasz AL, Chang ZZ, Li HB (2017) Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environ Pollut 220:514–522

    CAS  PubMed  Google Scholar 

  • Wolf M, Kappler A, Jiang J, Meckenstock RU (2009) Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environ Sci Technol 43(15):5679–5685

    CAS  PubMed  ADS  Google Scholar 

  • Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77(21):7633–7639

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wu C, An WH, Liu ZY, Lin J, Qian ZY, Xue SG (2020) The effects of biochar as the electron shuttle on the ferrihydrite reduction and related arsenic (As) fate. J Hazard Mater 390:121391. https://doi.org/10.1016/j.jhazmat.2019.121391

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Yang H, Qu XX, Zhu YR, Zhang ML, Wu FC (2013) Spectral analysis of dissolved organic matter of typical land and aquatic plants in dianchi lake. Environ Sci Res 26(1):72–79. (in Chinese)

    CAS  Google Scholar 

  • Xu S, Gong XF, Zou HL, Liu CY, Chen CL, Zeng XX (2015) Mechanism of the adsorption process: Cu2+ adsorpted by ramie stalk. J Chin Chem Soc 62:1072–1078

    Google Scholar 

  • Xue SG, Jiang XX, Wu C, Hartley W, Qian ZY, Luo XH, Li WC (2020) Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system. Environ Pollut 260:114010. https://doi.org/10.1016/j.envpol.2020.114010

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83(7):925–932

    CAS  PubMed  ADS  Google Scholar 

  • Yan M, Ma J, Ji G (2016) Examination of effects of Cu(II) and Cr(III) on Al(III) binding by dissolved organic matter using absorbance spectroscopy. Water Res 93:84–90

    CAS  PubMed  Google Scholar 

  • Yang R, Li ZW, Huang B, Luo NL, Huang M, Wen JJ, Zhang Q, Zhai XQ, Zeng GM (2018) Effects of Fe(III)-fulvic acid on Cu removal via adsorption versus coprecipitation. Chemosphere 197:291–298

    CAS  PubMed  ADS  Google Scholar 

  • Yang XF, Meng L, Meng FG (2019) Combination of self-organizing map and parallel factor analysis to characterize the evolution of fluorescent dissolved organic matter in a full-scale landfill leachate treatment plant. Sci Total Environ 654:1187–1195

    CAS  PubMed  ADS  Google Scholar 

  • Yu HB, Song YH, Xi BD, Xia XH, He XS, Tu X (2012) Application of chemometrics to spectroscopic data for indicating humification degree and assessing salinization processes of soils. J Soils Sediments 12(3):341–353

    CAS  Google Scholar 

  • Yu HY, Liu C, Zhu JS, Li FB, Deng DM, Wang Q, Liu CS (2016) Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut 209:38–45

    CAS  PubMed  Google Scholar 

  • Yuan DH, Guo XJ, Wen L, He LS, Wang JG, Li JQ (2015) Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis. Environ Pollut 204:152–160

    CAS  PubMed  Google Scholar 

  • Yuan CL, Liu TX, Li FB, Liu CS, Yu HY, Sun WM, Huang WL (2018a) Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium. J Environ Manag 2018:747–753

    Google Scholar 

  • Yuan DH, An YC, He XC, Yan CL, Jia YP, Wang HT, He LS (2018b) Fluorescent characteristic and compositional change of dissolved organic matter and its effect on heavy metal distribution in composting leachates. Environ Sci Pollut Res 25:18866–18878

    CAS  Google Scholar 

  • Yuan ZD, Ma X, Wu X, Wang X, Wang XF, Jia YF (2018c) Effect of hydroquinone-induced iron reduction on the stability of Fe(III)-As(V) Co-precipitate and arsenic mobilization. Appl Geochem 97:1–10

    CAS  ADS  Google Scholar 

  • Yuan CL, Li FB, Cao WH, Yang Z, Hu M, Sun WM (2019) Cadmium solubility in paddy soil amended with organic matter, sulfate, and iron oxide in alternative watering conditions. J Hazard Mater 378:120672. https://doi.org/10.1016/j.jhazmat.2019.05.065

    Article  CAS  PubMed  Google Scholar 

  • Zhang HC, Weber EJ (2009) Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments. Environ Sci Technol 43:1042–1048

    CAS  PubMed  ADS  Google Scholar 

  • Zhang J, Dai JL, Wang RQ, Li FS, Wang WX (2009) Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids Surf A Physicochem Eng Aspects 335:194–201

    CAS  Google Scholar 

  • Zhang J, Dong HL, Zhao LD, McCarrick R, Agrawal A (2014) Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens. Chem Geol 370:29–39

    CAS  ADS  Google Scholar 

  • Zhou Z, Guo L, Minor EC (2016) Characterization of bulk and chromophoric dissolved organic matter in the Laurentian Great Lakes during summer 2013. J Great Lakes Res 42:789–801

    CAS  Google Scholar 

  • Zhu ZK, Tao L, Li FB (2013) Effects of dissolved organic matter on adsorbed Fe(II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions. Chemosphere 93:29–34

    CAS  PubMed  ADS  Google Scholar 

  • Zitoun R, Clearwater SJ, Hassler C, Thompson KJ, Albert A, Sander SC (2019) Copper toxicity to blue mussel embryos (Mytilus galloprovincialis) the effect of natural dissolved organic matter on copper toxicity in estuarine waters. Sci Total Environ 653:300–314

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgments

The financial support of this study from the National Natural Science Foundation of China (No. 41761095) is gratefully acknowledged.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Gong, X. (2021). Effects of Dissolved Organic Matter on the Bioavailability of Heavy Metals During Microbial Dissimilatory Iron Reduction: A Review. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 257. Reviews of Environmental Contamination and Toxicology, vol 257. Springer, Cham. https://doi.org/10.1007/398_2020_63

Download citation

Publish with us

Policies and ethics