Skip to main content

Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects

Part of the Reviews of Environmental Contamination and Toxicology book series (RECT,volume 249)

Abstract

Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders, and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physicochemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metal-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches; evaluates their efficacy to remove toxic metals from our natural environment; explores current scientific progresses, field experiences, and sustainability issues; and revises world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in the twenty-first century.

Keywords

  • Agromining
  • Arbuscular mycorrhizal fungi
  • Aromatic plants
  • Constructed wetlands
  • Contaminated sites
  • Endophytes
  • Energy crops
  • Engineered plants
  • Environmental pollution
  • Field studies
  • Heavy metals
  • Hyperaccumulators
  • Molecular mechanism
  • Phytoextraction
  • Phytomining
  • Phytoremediation
  • Phytostabilization
  • Phytotechnologies
  • Phytovolatilization
  • Rhizodegradation
  • Rhizofiltration
  • Toxicity
  • Trophic transfer

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/398_2019_24
  • Chapter length: 61 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-20194-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Abbreviations

ABC:

ATP-binding cassettes

ACC:

1-Aminocyclopropane-1-carboxylate deaminase

Ag:

Silver

AMF:

Arbuscular mycorrhizal fungi

As:

Arsenic

ATSDR:

Agency for Toxic Substances and Disease Registry

BCF:

Bioconcentration factor

CA:

Citric acid

CAXs:

Cation exchangers

Cd:

Cadmium

CDF:

Cation diffusion facilitators

Co:

Cobalt

COPTs:

Copper transporters

Cr:

Chromium

Cu:

Copper

CWs:

Constructed wetlands

DDT:

Dichlorodiphenyltrichloroethane

DIM:

Daily intake of metal

DTPA:

Diethylenetriaminepentaacetic acid

DW:

Dry weight

EDDHA:

Ethylenediamine-di(o-hydroxyphenylacetic acid)

EDDS:

Ethylenediamine-N,N′-disuccinic acid

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethyleneglycolbis(b-aminoethyl ether),N,N,N0,N-tetraacetic acid

EKF:

Electrokinetic field

ETCs:

Evapotranspiration caps

EU:

European Union

Fe:

Iron

GEPs:

Genetically engineered plants

GSH:

Glutathione

HDL:

High-density lipoprotein

HEDTA:

N-Hydroxyethylenediaminetriacetic acid

Hg:

Mercury

HMA:

Heavy-metal ATPase

HMs:

Heavy metals

IAA:

Indole acetic acid

IARC:

International Agency for Research on Cancer

LCA:

Life cycle assessment

LDL:

Low-density lipoprotein

MFC:

Microbial fuel cell

MTPs:

Membrane transporter proteins

MTs:

Metallothioneins

Ni:

Nickel

NTA:

Nitrilotriacetic acid

PAHs:

Polyaromatic hydrocarbons

Pb:

Lead

PCBs:

Polychlorinated biphenyl

PCs:

Phytochelatins

PGPR:

Plant growth-promoting rhizobacteria

PMFC:

Plant-microbial fuel cell

PMIs:

Plant-microbe interactions

ROS:

Reactive oxygen species

SBMs:

Soil beneficial microorganisms

TCE:

Trichloroethylene

TF:

Translocation factor

US EPA:

US Environmental Protection Agency

WHO:

World Health Organization

ZIP:

Zinc-iron permease

References

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanism behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499

    CAS  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    CAS  Google Scholar 

  • Ahmad R, Tehsin Z, Malik ST, Asad SA, Shahzad M, Bilal M, Shah MM, Khan SA (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean Soil Air Water 44:195–201

    CAS  Google Scholar 

  • Ali H, Khan E (2017) Environmental chemistry in the twenty-first century. Environ Chem Lett 15(2):329–346

    CAS  Google Scholar 

  • Ali H, Khan E (2018a) What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ - proposal of a comprehensive definition. Toxicol Environ Chem 100:6–19

    CAS  Google Scholar 

  • Ali H, Khan E (2018b) Trophic transfer, bioaccumulation and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs: concepts and implications for wildlife and human health. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2018.1469398

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    CAS  Google Scholar 

  • Amer N, Chami ZA, Bitar LA, Mondelli D, Dumontet S (2013) Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremediation 15(5):498–512

    CAS  Google Scholar 

  • Andrades-Moreno L, Cambrollé J, Figueroa ME, Mateos-Naranjo E (2013) Growth and survival 739 of Halimione portulacoides stem cuttings in heavy metal contaminated soils. Mar Pollut Bull 75(1–2):28–32

    CAS  Google Scholar 

  • Angelova VR, Grekov DF, Kisyov VK, Ivanov KI (2015) Potential of lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. Int J Biol Biomol Agric Food Biotechnol Eng 9:479–486

    Google Scholar 

  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MNV, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation - a review. Earth Sci Rev 171:621–645

    CAS  Google Scholar 

  • Antony VDE, Alan JM, Baker RDR, Rufus LC, Christopher WN, Anderson JA, Meech PD, Erskine MO, Simonnot JV, Vaughan J, Louis M, Guillaume E, Bruno F, Qiu R, David RM (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Google Scholar 

  • Baldantoni D, Cicatelli A, Bellino A, Castiglione S (2014) Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J Environ Manag 146:94–99

    CAS  Google Scholar 

  • Balestrazzi A, Bonadei M, Quattrini E, Carbonera D (2009) Occurrence of multiple metal-resistance in bacterial isolates associated with transgenic white poplars (Populus alba L.). Ann Microbiol 59:17–23

    CAS  Google Scholar 

  • Bang J, Kamala-Kannan S, Lee KJ et al (2015) Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. Int J Phytoremediation 17:515–520

    CAS  Google Scholar 

  • Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulce S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serb 34:3–14

    Google Scholar 

  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res 8:500–1511

    Google Scholar 

  • Beans C (2017) Phytoremediation advances in the lab but lags in the field. PNAS 114:7475–7477

    CAS  Google Scholar 

  • Beg KR, Ali S (2008) Chemical contaminants and toxicity of Ganga river sediment from up and down stream area at Kanpur. Am J Environ Sci 4(4):362–366

    CAS  Google Scholar 

  • Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017a) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    CrossRef  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017b) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol 14:1–14. https://doi.org/10.1007/s00244-017-0490-x

    CAS  CrossRef  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017c) Constructed Wetlands: an emerging phytotechnology for the degradation and detoxification of industrial wastewaters. In: Environmental pollutants and their bioremediation approaches. CRC Press, Boca Raton, pp 397–426

    Google Scholar 

  • Bhardwaj R, Gupta A, Garg JK (2017) Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci 31:52–66

    Google Scholar 

  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Song WY, Lee Y, Lim TP, Liu JR (2011) Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tissue Organ Cult 105:85–91

    CAS  Google Scholar 

  • Bini C, Maleci L, Wahsha M (2017) Potentially toxic elements in serpentine soils and plants from Tuscany (Central Italy). A proxy for soil remediation. Catena 148:60–66

    CAS  Google Scholar 

  • Blanco-Canqui H (2010) Energy crops and their implications on soil and environment. Agron J 102:403–419

    CAS  Google Scholar 

  • Cabral L, Soares CR, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31(11):1655–1664

    CAS  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636

    CAS  Google Scholar 

  • Carvalho PN, Arias CA, Brix H (2017) Constructed wetlands for water treatment: new developments. Water 9:397

    Google Scholar 

  • Chai MW, Shi FC, Li RL, Liu FC, Qiu GY, Liu LM (2013) Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress. S Afr J Bot 85:63–69

    CAS  Google Scholar 

  • Chai M, Shi F, Li R, Qiu G, Liu F, Liu L (2014) Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiol Plant 36(3):745–754

    CAS  Google Scholar 

  • Chaiyarat R, Suebsima R, Putwattana N, Kruatrachue M, Pokethitiyook P (2011) Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water Air Soil Pollut 214(1–4):383–392

    CAS  Google Scholar 

  • Chandra R, Yadav S, Bharagava RN, Murthy RC (2008) Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent by Typha angustata L. J Environ Manag 88(4):1016–1024

    CAS  Google Scholar 

  • Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162(2–3):1514–1521

    CAS  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    CrossRef  Google Scholar 

  • Chaney LR, Scott Angle J, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    CAS  Google Scholar 

  • Chang F-C, Ko C-H, Tsai M-J, Wang Y-N, Chung C-Y (2014) Phytoremediation of heavy metal contaminated soil by Jatropha Curcas. Ecotoxicology 23:1969–1978

    CAS  Google Scholar 

  • Chen B-C, Lai H-Y, Juang K-W (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol Environ Saf 80:393–400

    CAS  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    CAS  Google Scholar 

  • Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol 15:299–326. https://doi.org/10.1007/s11157-016-9391-0

    CAS  CrossRef  Google Scholar 

  • Cicero-Fernández D, Peña-Fernández M, Expósito-Camargo JA, Antizar-Ladislao B (2015) Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments. Int J Phytoremediation 18:575–582. https://doi.org/10.1080/15226514.2015.1086306

    CAS  CrossRef  Google Scholar 

  • Conesa MH, Evangelou WHM, Robinson HB et al (2012) A critical view of the current state of phytotechnologies to remediate soils: still a promising tool? Sci World J 2012:173829

    Google Scholar 

  • Das DK, Chaturvedi OP (2009) Energy dynamics and bioenergy production of Populus deltoides G-3 Marsh plantation in eastern India. Biomass Bioenergy 33:144–148

    CAS  Google Scholar 

  • de Souza ER, dos Santos Freire MBG, de Melo DVM, de Assunção Montenegro AA (2014) Management of Atriplex nummularia Lindl. in a salt affected soil in a semi arid region of Brazil. Int J Phytoremediation 16:73–85

    Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    CAS  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2011) Biotechnological approaches for phytoremediation. Academic, Oxford, pp 309–328

    Google Scholar 

  • Dilks RT, Monette F, Glaus M (2016) The major parameters on biomass pyrolysis for hyperaccumulative plants - a review. Chemosphere 146:385–395

    CAS  Google Scholar 

  • Ding Z, Wu J, You A, Huang B, Cao C (2016) Effects of heavy metals on soil microbial community structure and diversity in the rice (Oryza sativa L. subsp. Japonica, Food Crops Institute of Jiangsu Academy of Agricultural Sciences) rhizosphere. Soil Sci Plant Nutr 63:75–83

    Google Scholar 

  • Dinh N, van der Ent A, Mulligan DR, Nguyen AV (2018) Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environ Exp Bot 147:1–12

    CAS  Google Scholar 

  • Dixit P, Singh S, Vanchesswaran R, Patnala K, Eapen S (2010) Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ 35:1696–1707

    Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    CAS  Google Scholar 

  • Doni S, Macci C, Peruzzi E, Iannelli R, Masciandaro G (2015) Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecol Eng 81:146–157

    Google Scholar 

  • Duman F, Ozturk F (2010) Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J Environ Sci 22(4):526–532

    CAS  Google Scholar 

  • Ecolotree (2013) Welcome to Ecolotree (Online). http://www.ecolotree.com

  • Fatima M, Usmani N, Hossain MM, Siddiqui MF, Zafeer MF, Firdaus F, Ahmad S (2014) Assessment of genotoxic induction and deterioration of fish quality in commercial species due to heavy-metal exposure in an urban reservoir. Arch Environ Contam Toxicol 67:203–213

    CAS  Google Scholar 

  • Fellet G, Marchiol L, Perosab D, Zerbiain G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 31:207–214

    Google Scholar 

  • Fruhwirth P, Liebhard P (2004) Miscanthus sinensis Giganteus. Produktion, Inhaltsstoffe und Verwertung. In: Miscanthus sinensis Giganteus: Chi-naachilfals nachwachsender Rohstoff. Landliches Forbildingsinstitut und Landwirtschaftskammer Osterreich, pp 34–38

    Google Scholar 

  • Gao K, Boiano S, Marzocchella A, Rehmann L (2014) Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresour Technol 174:176–181

    CAS  Google Scholar 

  • Garcia-Salgado S, Garcia-Casillas D, Quijano-Nieto MA, Bonilla-Simon MM (2012) Arsenic and heavy metal uptake and accumulation in native plants species from soils polluted by mining activities. Water Air Soil Pollut 223:559–572

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361

    CAS  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2016) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185. https://doi.org/10.1016/j.plantsci.2016.11.016

    CAS  CrossRef  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Goel S, Malik JA, Nayyar H (2009) Molecular approach for phytoremediation of metal-contaminated sites. Arch Agron Soil Sci 55:451–475

    CAS  Google Scholar 

  • Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66

    CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing gsh1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    CAS  Google Scholar 

  • Gupta AK, Verma SK, Khan K, Verma RK (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites. Environ Sci Technol 47:10115–10116

    CAS  Google Scholar 

  • Habibul N, Hu Y, Wang Y-K, Chen W, Yu H-Q, Sheng G-P (2016) Bioelectrochemical chromium(VI) removal in plant-microbial fuel cells. Environ Sci Technol 50:3882–3889

    CAS  Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Google Scholar 

  • He H, Ye Z, Yang D et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    CAS  Google Scholar 

  • Ho C-H, Hseu Z-Y, Chen N-C, Tsai C-C (2013) Evaluating heavy metal concentration of plants on a serpentine site for phytoremediation applications. Environ Earth Sci 70:191–199

    CAS  Google Scholar 

  • Howladar SM (2014) A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol Environ Saf 100:69–75

    CAS  Google Scholar 

  • Hsieh J, Chen C, Chiu M, Chein M, Chang J, Endo G et al (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    CAS  Google Scholar 

  • Hu Y, Nan Z, Su J, Wang N (2013) Heavy metal accumulation by poplar in calcareous soil with various decrees of multi-metal contamination: implications for phytoextraction and phytostabilization. Environ Sci Pollut Res 20:7194–7203

    CAS  Google Scholar 

  • Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X-e (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102:11034–11038

    CAS  Google Scholar 

  • Huang JC, Suárez MC, Yang SI, Lin Z-Q, Terry N (2013) Development of a constructed wetland water treatment system for selenium removal: incorporation of an algal treatment component. Environ Sci Technol 47(18):10518–10525

    CAS  Google Scholar 

  • Huang J, Liu Z, Li S, Xu B, Gong Y, Yang Y, Sun H (2016) Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. J Gen Appl Microbiol 62:258–265

    CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2008) Promotion of metal accumulation in nodule of Astragalus sinicus by the expression of the iron-regulated transporter gene in Mesorhizobium huakuii subsp. rengei B3. J Biosci Bioeng 105:642–648

    CAS  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70

    CAS  Google Scholar 

  • Jaishankar M, Tseten T, Abbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Google Scholar 

  • Jan FA, Ishaq M, Khan S et al (2010) A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J Hazard Mater 179(1–3):612–621

    CAS  Google Scholar 

  • Javed M, Usmani N (2015) Impact of heavy metal toxicity on hematology and glycogen status of fish: a review. Proc Natl Acad Sci India Sect B Biol Sci 85:889–900

    CAS  Google Scholar 

  • Javed M, Ahmad I, Usmani N, Ahmad M (2016) Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent. Ecotoxicol Environ Saf 127:163–169

    CAS  Google Scholar 

  • Jezierska B, Ługowska K, Witeska M (2009) The effects of heavy metals on embryonic development of fish (a review). Fish Physiol Biochem 35(4):625–640

    CAS  Google Scholar 

  • Jiang Y, Lei M, Duan L, Longhurst P (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339

    CAS  Google Scholar 

  • Jianxu W, Xinbin F, Christopher WNA, Ying X, Lihai S (2012) Remediation of mercury contaminated sites - a review. J Hazard Mater 221–222:1–18

    Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16:321–333

    CAS  Google Scholar 

  • Kale RA, Lokhande VH, Ade AB (2015) Investigation of chromium phytoremediation and tolerance capacity of a weed. Portulaca oleracea L. in a hydroponic system. Water Environ J 29(2):236–242

    CAS  Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata-prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894

    CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    CAS  Google Scholar 

  • Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manage 90:3451–3457

    CAS  Google Scholar 

  • Khan A, Sharif M, Ali A, Shah SNM, Mian IA, Wahid F, Jan B, Adnan M, Nawaz S, Ali N (2014) Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. Am J Plant Sci 5:1578–1586

    Google Scholar 

  • Khaokaew S, Landrot G (2014) A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants. Chemosphere 138:883–887. https://doi.org/10.1016/j.chemosphere.2014.09.108

    CAS  CrossRef  Google Scholar 

  • Kim SJ, Kim MY, Jeong SJ, Jang MS, Chung IM (2012) Analysis of the biomass content of various Miscanthus genotypes for biofuel production in Korea. Ind Crops Prod 38:46–49

    CAS  Google Scholar 

  • Koptsik GN (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47:923–939

    CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810

    CAS  Google Scholar 

  • Lajayar BA, Ghorbanpourb M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390

    Google Scholar 

  • Lavanya C, Murthy IYLL, Nagaraj G, Mukta N (2012) Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India. Biomass Bioenergy 39:204–209

    CAS  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    CAS  Google Scholar 

  • Lefèvre I, Marchal G, Edmond GM, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol - sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L. J Plant Physiol 167(5):365–374

    Google Scholar 

  • Li C, Xu Y, Jiang W, Dong X, Wang D, Liu B (2013) Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour Technol 143:46–52

    CAS  Google Scholar 

  • Li X, Li D, Yana Z, Ao Y (2018) Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv 8:30902–30911

    CAS  Google Scholar 

  • Liang L, Liu W, Sun Y, Huo X, Li S, Zhou Q (2017) Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ Rev 25:269–281

    CAS  Google Scholar 

  • Lindsay (1979) Permissible limits for metals. http://www.occeweb.com/og/metals-limits.pdf

  • Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS One 10(6):e0128824

    Google Scholar 

  • Luis R, Rincon J, Asencio I, Rodriguez-Castellanos L (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Int J Phytoremediation 9:1–13

    Google Scholar 

  • Luo S, Chen L, Chen J, Xiao X, Xu T, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng G (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    CAS  Google Scholar 

  • Łuszczek-Trojnar E, Drąg-Kozak E, Szczerbik P, Socha M, Popek W (2014) Effect of long-term dietary lead exposure on some maturation and reproductive parameters of a female Prussian carp (Carassius gibelio B.). Environ Sci Pollut Res Int 21:2465–2478

    Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  Google Scholar 

  • Ma Y, Oliviera RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016a) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016b) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Google Scholar 

  • Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytoremediation 13:264–279

    Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 26:111–121

    Google Scholar 

  • Mahmood Q, Pervez A, Zeb BS et al (2013) Natural treatment systems as sustainable eco-technologies for the developing countries. Biomed Res Int 2013:796373

    Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes - an emerging trend in phytoremediation. Int J Phytoremediation 13:959–969

    CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by Tamarix smyrnensis growing on contaminated non saline and saline soils. Environ Res 106:326–332

    CAS  Google Scholar 

  • Mao X, Han FX, Shao X, Guo K, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24

    CAS  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    CAS  Google Scholar 

  • Maszenan AM, Liu Y, Ng WJ (2011) Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnol Adv 29(1):111–123

    CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Laing GD, Witters N, Thewys T, Tack FMG (2010) The use of bio-energy crops (Zea mays) for phytoattenuation of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    CAS  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42(7):741–775

    CAS  Google Scholar 

  • Mekawy AMM, Assaha DVM, Munehiro R et al (2018) Characterization of type 3 metallothionein-like gene (OsMT-3a) from rice, revealed its ability to confer tolerance to salinity and heavy metal stresses. Environ Exp Bot 147:157–166

    CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34:1–32

    CAS  Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strazynska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–1418

    CAS  Google Scholar 

  • Mukherjee G, Saha C, Naskar N et al (2018) An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Sci Rep 8:6979

    Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. Appl Ecol Environ Res 8:207–222

    Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nahar N, Aminur R, Nawani NN, Ghosh S, Mandal A (2017) Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J Plant Physiol 218:121–126. https://doi.org/10.1016/j.jplph.2017.08.001

    CAS  CrossRef  Google Scholar 

  • Nazeer S, Hashmi MZ, Malik RN (2014) Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecol Indic 43:262–270

    CAS  Google Scholar 

  • Nie L, Shah S, Rashid A (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    CAS  Google Scholar 

  • Nirola R, Megharaj M, Palanisami T, Aryal R, Venkateswarlu K, Naidu R (2015) Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine: a quest for phytostabilization. J Sustain Mining 14:115–123

    Google Scholar 

  • Nunes da Silva M, Mucha AP, Rocha AC, Silva C, Carli C, Gomes CR, Almeida CMR (2014) Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuar Coast Shelf Sci 141:78–84

    CAS  Google Scholar 

  • Oosten MJ, Van Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 11:135–146

    Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73

    Google Scholar 

  • Park JH, Lamba D, Paneerselvama P, Choppalaa G, Bolana N, Chung J-W (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574

    CAS  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Google Scholar 

  • Pedro CA, Santos MSS, Ferreira SMF, Gonçalves SC (2013) The influence of cadmium 1051 contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Mar Environ Res 92:197–205

    CAS  Google Scholar 

  • Perez-Cruzado C, Merino A, Rodrıguez-Soalleiro R (2011) A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass Bioenergy 35:2839–2851

    Google Scholar 

  • Ping Z, Wensheng S, Zhian L, Bin L, Jintian L, Jingsong S (2009) Removal of metals by sorghum plants from contaminated land. J Environ Sci 21:1432–1437

    Google Scholar 

  • Prade T, Svensson S-E, Mattsson JE (2012) Energy balances for biogas and solid biofuel production from industrial hemp. Biomass Bioenergy 40:36–52

    CAS  Google Scholar 

  • Prasad A, Singh AK, Chand S, Chanotiya C, Patra D (2010) Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Commun Soil Sci Plant Anal 41(18):2170–2186

    CAS  Google Scholar 

  • Quievryn G, Peterson E, Messer J, Zhitkovich A (2003) Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells. Biochemist 42(4):1062–1070

    CAS  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free-floating macrophyte Azolla pinnata. Int J Phytoremediation 10:430–439

    CAS  Google Scholar 

  • Rai R, Pandey S, Rai SP (2011) Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology 20:1900–1913

    CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    CAS  Google Scholar 

  • Ramamurthy AS, Memarian R (2014) Chelate enhanced phytoremediation of soil containing a mixed contaminant. Environ Earth Sci 72:201

    CAS  Google Scholar 

  • Reddy KR, Amaya-Santos G, Yargicoglu E, Cooper DE, Negri MC (2017) Phytoremediation of heavy metals and PAHs at slag fill site: three-year field-scale investigation. Int J Geotech Eng 13(1):32–47. https://doi.org/10.1080/19386362.2017.1318231

    CAS  CrossRef  Google Scholar 

  • Redfern LK, Gunsch CK (2016) Endophytic phytoaugmentation: treating wastewater and runoff through augmented phytoremediation. Ind Biotechnol (New Rochelle N Y) 12:83–90

    Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance 1074 characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184(1–3):299–307

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 193–230

    Google Scholar 

  • Robinson B, Green S, Mills T et al (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Aust J Soil Res 41:599–611

    Google Scholar 

  • Sahu RK, Katiyar S, Tiwari J, Kisku GC (2007) Assessment of drain water receiving effluent from tanneries and its impact on soil and plants with particular emphasis on bioaccumulation of heavy metals. J Environ Biol 28(3):685–690

    CAS  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39:735–741

    CAS  Google Scholar 

  • Salazar MJ, Pignata ML (2014) Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36

    CAS  Google Scholar 

  • Salihaj M, Bani A, Echevarria G (2016) Heavy metals uptake by hyperaccumulating flora in some serpentine soils of Kosovo. Global NEST J 18:214–222

    CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    CAS  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    CrossRef  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69

    Google Scholar 

  • Segura R, Arancibia V, Zuniga MC, Pasten P (2006) Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. J Geochem Explor 91:71–80

    CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Min Eng 22:1007–1019

    CAS  Google Scholar 

  • Shim D, Kim S Choi Y-I, Song W-Y, Park P, Youk ES, Jeong S-C, Martinoia E, Noh E-W, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90:1478–1486

    CAS  Google Scholar 

  • Siddiqui F, Krishna SK, Tandon P, Srivastava S (2013) Arsenic accumulation in Ocimum spp. and its effect on growth and oil constituents. Acta Physiol Plant 35(4):1071–1079

    CAS  Google Scholar 

  • Simpson JA, Picchi G, Gordon AM, Thevathasan NV, Stanturf J, Nicholas I (2009) Short rotation crops for bioenergy systems. Environmental benefits associated with short-rotation woody crops, Technical Review No. 3, IEA Bioenergy. http://www.shortrotationcrops.org/taskreports.htm

  • Singh S, Korripally P, Vancheeswaran R, Eapen S (2011) Transgenic Nicotiana tabacum plants expressing a fungal copper transporter gene show enhanced acquisition of copper. Plant Cell Rep 30:1929–1938

    CAS  Google Scholar 

  • Sobolev D, Begonia MFT (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456

    CAS  Google Scholar 

  • Sone Y, Nakamura R, Pan-Hou H, Sato MH, Itoh I, Kiyono M (2013) Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE. AMB Express 3:52

    Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    CAS  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Google Scholar 

  • Srivastava S, Verma PC, Chaudhary V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    CAS  Google Scholar 

  • Stephenson C, Black CR (2014) One step forward, two steps back: the evolution of phytoremediation into commercial technologies. Biosci Horizons 7:1–15

    CAS  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    CAS  Google Scholar 

  • Sun YY, Xu HX, Li JH, Shi XQ, Wu JC, Ji R, Guo HY (2015) Phytoremediation of soils contaminated with phenanthrene and cadmium by growing Willow (Salix × aureopendula CL ‘J1011’). Int J Phytoremediation 18(2):150–156

    Google Scholar 

  • Tiwari S, Singh SN, Garg SK (2012) Stimulated phytoextraction of metals from fly ash by microbial interventions. Environ Technol 33:2405–2413

    CAS  Google Scholar 

  • Tomović GM, Mihailović ML, Tumi AF, Gajić BA, Mišljenović TD, Niketić MS (2013) Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Arch Environ Prot 39:29–49

    Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Google Scholar 

  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894

    CAS  Google Scholar 

  • Vamerali T, Marchiol L, Bandiera M, Fellet G, Dickinson N, Lucchini P, Mosca G, Zerbi G (2012) Advances in agronomic management of phytoremediation: Methods and results from a 10-year study of metal-polluted soils. Ital J Agron 7(4):e42. https://doi.org/10.4081/ija.2012.e42

    CrossRef  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    CAS  Google Scholar 

  • Venkateswaran P, Vellaichamy S, Palanivelu K (2007) Speciation of heavy metals in electroplating industry sludge and wastewater residue using inductively coupled plasma. Int J Environ Sci Technol 4(4):497–504

    CAS  Google Scholar 

  • Wan X, Lei M, Chen T (2016) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563–564:796–802

    Google Scholar 

  • Wang H, Zhong G (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol Trace Elem Res 143(1):489–499

    CAS  Google Scholar 

  • Wang Y-C, Ko C-H, Chang F-C, Chen P-Y, Liu T-F, Sheu Y-S, Shih T-L, Teng C-J (2011) Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass Bioenergy 35:50–58

    CAS  Google Scholar 

  • Wang H-L, Tian C-Y, Jiang L, Wang L (2014) Remediation of heavy metals contaminated\ saline soils: a halophyte choice? Environ Sci Technol 48:21–22

    CAS  Google Scholar 

  • Weggler-Beaton K, McLaughlin MJ, Graham RD (2000) Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids. Aus J Soil Res 38(1):37–45

    CAS  Google Scholar 

  • Wei S, da Silva JAT, Zhou Q (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668

    CAS  Google Scholar 

  • Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, van der Lelie D, Taghavi CR, Vangronsveld J (2013) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sediments 13:176–188

    CAS  Google Scholar 

  • Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G, Wittig J, Werner P (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132:46–53

    Google Scholar 

  • Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12

    Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    CAS  Google Scholar 

  • Wu G, Kanga H, Zhang X, Shaob H, Chuc K, Ruan CA (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    CAS  Google Scholar 

  • Wu H, Liu X, Zhao J, Yu J (2013) Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. J Plant Growth Regul 32(2):353–361

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647. https://doi.org/10.5402/2011/402647

    CrossRef  Google Scholar 

  • Xia Y, Liu J, Wang Y, Zhang XX, Shen ZG, Hu Z et al (2018) Ectopic expression of Vicia sativa Caffeoyl-CoA O-methyltransferase (VsCCoAOMT) increases the uptake and tolerance of cadmium in Arabidopsis. Environ Exp Bot 145:47–53

    CAS  Google Scholar 

  • Xie Z, Wu L, Chen N, Liu C, Zheng Y, Xu S, Li F, Xu Y (2012) Phytoextraction of Pb and Cu contaminated soil with maize and Microencapsulated EDTA. Int J Phytoremediation 14:727–740

    CAS  Google Scholar 

  • Xu J, Yin HX, Liu X, Li X (2010) Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta 231(2):449–459

    CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yadava KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Google Scholar 

  • Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T (2014) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 58:255–261

    CAS  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2013) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Google Scholar 

  • Zhan Y, Liu J, Zhou Y et al (2013) enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 15:1100–1107

    Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419

    CAS  Google Scholar 

  • Zhang D-Q, Jinadasa KBSN, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Application of constructed wetlands for wastewater treatment in developing countries - a review of recent developments (2000–2013). J Environ Manag 141:116–131

    CAS  Google Scholar 

  • Zhang D-Q, Jinadasa KBSN, Gersberg RM, Liu Y, Tan SK, Ng WJ (2015a) Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). J Environ Sci 30:30–46

    CAS  Google Scholar 

  • Zhang H, Chen X, He C, Liang X, Oh K, Liu X, Lei Y (2015b) Use of energy crop (Ricinus communis L.) for phytoextraction of heavy metals assisted with citric acid. Int J Phytoremediation 17:632–639

    CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Zhihui B (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Google Scholar 

  • Zhang J, Zhang M, Shohag MJ et al (2016) Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta 243(3):577–589

    CAS  Google Scholar 

  • Zucaro A, Forte A, Basosi R, Fagnano M, Fierro A (2016) Life cycle assessment of second generation bioethanol produced from low-input dedicated crops of Arundo donax L. Bioresour Technol 219:589–599

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support as “Major Research Projects” (Grant No.: EEQ/2017/000407) from the “Science and Engineering Research Board” (SERB), Department of Science and Technology (DST), Government of India (GOI), New Delhi, India, and University Grants Commission (UGC) Fellowship received by Mr. Gaurav Saxena for doctoral studies is duly acknowledged. Authors are also extremely thankful to the anonymous reviewers for valuable comments/suggestions for improvement in the review article.

Declarations of Interest

Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Naresh Bharagava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, G., Purchase, D., Mulla, S.I., Saratale, G.D., Bharagava, R.N. (2019). Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 249. Reviews of Environmental Contamination and Toxicology, vol 249. Springer, Cham. https://doi.org/10.1007/398_2019_24

Download citation