Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 241))

Abstract

Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht A, Schultze U, Liedgens M, Flühler H, Frossard E (2002) Incorporating soil structure and root distribution into plant uptake models for radionuclides: toward a more physically based transfer model. J Environ Radioact 59:329–350

    CAS  Google Scholar 

  • Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:1551–1557

    CAS  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. New Engl J Med 357:2277–2284

    CAS  Google Scholar 

  • Broadley MR, Willey NJ (1997) Differences in root uptake of radiocaesium by 30 plant taxa. Environ Pollut 95:311–317

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Buysse J, Van de Brande K, Merckx R (1996) Genotypic differences in the uptake and distribution of radiocaesium in plants. Plant Soil 178:265–271

    CAS  Google Scholar 

  • Chakraborty SR, Azim R, Rahman AKMR, Sarker R (2013) Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the Chittagong city of Bangladesh. J Phys Sci 24:95–113

    CAS  Google Scholar 

  • Chatterjee S, Datta S, Mallick PH, Mitra A, Veer V, Mukhopadhyay SK (2013a) Use of wetland plants in bioaccumulation of heavy metals. In: Gupta DK (ed) Plant based remediation processes, soil biology, vol 35. Springer, Berlin Heidelberg

    Google Scholar 

  • Chatterjee S, Mitra A, Datta S, Veer V (2013b) Phytoremediation protocols: an overview. In: Gupta DK (ed) Plant based remediation processes, soil biology, vol 35. Springer, Berlin Heidelberg

    Google Scholar 

  • Chatterjee S, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2012) A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India. Environ Monit Assess 184:5139–5150

    CAS  Google Scholar 

  • Clausnitzer V, Hopmans JW (1994) Simultaneous modelling of transient three dimensional root growths and soil water flow. Plant Soil 164:299–314

    CAS  Google Scholar 

  • Collander R (1941) Selective absorption of cations by higher plants. Plant Physiol 16:691–720

    CAS  Google Scholar 

  • Comans RNJ, Hockley DE (1992) Kinetics of cesium sorption on illite. Geochim Cosmochim Acta 56:1157–1164

    CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab P, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    CAS  Google Scholar 

  • Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:1–5

    Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    CAS  Google Scholar 

  • Din KS, Harb S, Abbady A, Saad N (2010) The distribution of the radionuclides Ra-226, Th-232 and K-40 in various parts of the Alfalfa plant. Tenth radiation physics and protection conference, 27–30 November, Nasr City-Cairo, Egypt. http://www.rphysp.com/s7/distribution.pdf

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    CAS  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochisky B (1999) Phytoremediation of radiocaesium‐contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475

    CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Phytoremediation of metals and radionuclides. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Germany

    Google Scholar 

  • Ehlken S, Kirchner G (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioact 58:97–112

    CAS  Google Scholar 

  • Eisenbud M, Gesell T (1997) Environmental radioactivity (fourth edition) from natural, industrial and military sources. Academic, USA

    Google Scholar 

  • Favas PJC, Pratas J (2013) Uptake of uranium by native aquatic plants: potential for bio indication and phytoremediation. E3S Web of Conferences1.13007. doi: 10.1051/e3sconf/20130113007; Article available at http://www.e3s-conferences.org or http://dx.doi.org/10.1051/e3sconf/20130113007

    Google Scholar 

  • Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 470–471:993–1002

    Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quart Rev Biol 61:313–337

    Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SMW, Krupka KM (2000) Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Acta 64:3085–3098

    CAS  Google Scholar 

  • Frissel MJ (1992) An update of the recommended soil-to-plant transfer factors of Sr-90, Cs-137 and transuranic. In: International Union of Radio Ecologists (ed) VIIIth report of the working group soil to-plant transfer factors. Balen, Belgium, pp 16–25, IUR Pub R-9212-02

    Google Scholar 

  • Fukuda S, Iwamoto K, Atsumi M, Yokoyama A, Nakayama T, Ishida K, Inouye I, Shiraiwa Y (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. J Plant Res 127:79–89

    CAS  Google Scholar 

  • Gast CH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17:789–799

    CAS  Google Scholar 

  • Gerten DS, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance–hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    CAS  Google Scholar 

  • Gupta DK (2013) Plant based remediation process. Springer, Germany. ISBN 978-3-642-35563-9

    Google Scholar 

  • Gupta DK, Sandalio LM (2012) Metal toxicity in plants: perception, signaling and remediation. Springer, Germany. ISBN 978-3-642-22080-7

    Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    CAS  Google Scholar 

  • Gupta DK, Chatterjee S, Datta S, Veer V, Walther C (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144

    CAS  Google Scholar 

  • Gupta DK, Walther C (2014) Radionuclide contamination and remediation through plants. Springer, Germany. ISBN 978-3-319-07664-5

    Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  Google Scholar 

  • Hegazy AK, Afifi SY, Alatar AA, Alwathnani HA, Emam MH (2013) Soil characteristics influence the radionuclide uptake of different plant species. Chem Ecol 29:255–269

    CAS  Google Scholar 

  • Hu N, Ding D, Li G, Zheng J, Li L, Zhao W, Wang Y (2014) Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J Environ Radioact 129:100–106

    CAS  Google Scholar 

  • Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158:1779–1788

    CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley AD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    CAS  Google Scholar 

  • Huhle B, Heilmeier H, Merkel B (2008) Potential of Brassica juncea and Helianthus annuus in phytoremediation for uranium. In: Merkel BJ, Hasche-Berger A (eds) Mining and hydrogeology. pp 307–318

    Google Scholar 

  • IAE (International Atomic Energy) (1989) Clean-up of large areas contaminated as a result of a nuclear accident. Technical reports series no. 300

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2002) Non-technical factors impacting on the decision making processes in environmental remediation, IAEA-TECDOC- 1279. IAEA, Vienna

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2014) The environmental behaviour of radium: revised edition, technical reports. Series no 476. IAEA, Vienna

    Google Scholar 

  • Kalin M, Kießig G, Küchler A (2002) Ecological water treatment processes for underground uranium mine water: Progress after three years of operating a constructed wetland. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Proceedings of the International Conference Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium, Freiberg, Germany, 15-21, September 2002, Springer Verlag, Berlin, Heidelberg, New York, pp 587

    Google Scholar 

  • Kamei-Ishikawaa N, Itob A, Tagamic K, Umitaa T (2013) Fate of radiocesium in sewage treatment process released by the nuclear accident at Fukushima. Chemosphere 93:689–694

    Google Scholar 

  • Kang DJ, Seo YJ, Saito T, Suzuki H, Ishii Y (2012) Uptake and translocation of cesium-133 in napier grass (Pennisetum purpureum Schum.) under hydroponic conditions. Ecotoxicol Environ Saf 82:122–126

    CAS  Google Scholar 

  • Kanter U, Hauser A, Michalke B, Draxl S, Schaffner AR (2010) Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. J Exp Bot 61:3995–4009

    CAS  Google Scholar 

  • Koarashi J, Moriya K, Atarashi-Andoh M, Matsunaga T, Fujita H, Nagaoka M (2012) Retention of potentially mobile radiocesium in forest surface soils affected by the Fukushima nuclear accident. Sci Rep 2:1005

    Google Scholar 

  • Kobayashi D, Nozomi N, Hisamatsu S, Yamagami M (2010) At KUP/HAK/KT9, a K? Transporter from Arabidopsis thaliana, mediates Cs? Uptake in Escherichia coli. Biosci Biotechnol Biochem 74:203–205

    CAS  Google Scholar 

  • Kohman TP (1947) Proposed new word: nuclide. Am J Phys 15:356–357

    Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Google Scholar 

  • Kunze C, Kießig G, Küchler A (2007) Management of passive biological water treatment systems for mine effluents. In: Marmiroli N, Borys S, Marmiroli M (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents. Springer, Germany

    Google Scholar 

  • Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater. Springer, London

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    CAS  Google Scholar 

  • Lasat MM, Ebbs SD, Kochian LV (1997) Potential for phytoextraction of 137Cs from contaminated soils. Plant Soil 195:99–106

    CAS  Google Scholar 

  • Lasat MM, Ebbs SD, Kochian LV (1998) Phytoremediation of a radiocaesium‐contaminated soil: evaluation of caesium‐137 bioaccumulation in shoots of three plant species. J Environ Qual 27:165–169

    CAS  Google Scholar 

  • LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    CAS  Google Scholar 

  • Liu CX, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioengg 80:637–649

    CAS  Google Scholar 

  • Lone MI, He ZH, Stoffella J, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220

    CAS  Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP, Holm PE, Christensen TH (1994) Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. Eur J Soil Sci 45:159–165

    CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, Springer briefs in biometals. Springer, New York, pp 27–53

    Google Scholar 

  • Markich SJ (2002) Uranium speciation and bioavailability in aquatic systems: an overview. Sci World J 2:707–729

    CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition for higher plants, 2nd edn. Academic Press and Harcourt Brace and Co., London-San Diego-New York-Boston-Sydney-Tokyo-Toronto

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    CAS  Google Scholar 

  • Menzel RG (1954) Competitive uptake by plants of potassium, rubidium, cesium, and calcium, strontium, barium from soils. Soil Sci 77:419–426

    CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    CAS  Google Scholar 

  • Mimura H, Saito M, Akiba K, Onodera Y (2001) Selective uptake of cesium by ammonium molybdophosphate (AMP)-calcium alginate composites. J Nucl Sci Technol 38:872–878

    CAS  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    CAS  Google Scholar 

  • Napier BA, Krupka KM, Valenta MM, Gilmore TJ (2005) Soil and groundwater sample characterization and agricultural practices for assessing food chain pathways in biosphere model. U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6881

    Google Scholar 

  • Napier BA, Fellows RJ, Krupka KM (2007) Soil-to-plant concentration ratios for assessing food chain pathways in biosphere models. U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6941

    Google Scholar 

  • Napier BA, Fellows RJ, Krupka KM (2012) Soil-to-plant concentration ratios for assessing food chain pathways in biosphere models. U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-7120

    Google Scholar 

  • Nisbet AF, Woodman RFM (2000) Soil-to-plant transfer factors for radiocesium and radiostrontium in agricultural systems. Health Phys 78:279–288

    CAS  Google Scholar 

  • Nishida S, Mizuno T, Obata H (2008) Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity. Plant Physiol Biochem 46:601–606

    CAS  Google Scholar 

  • Nishita H, Steen AJ, Larson KH (1958) Release of strontium-90 and cesium-137 from vina loam upon prolonged cropping. Soil Sci 86:195–201

    CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Payne RB, Gentry DA, Rapp-Giles BJ, Casalot L, Wall JD (2002) Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome C3 mutant. Appl Environ Microbiol 68:3129–3132

    CAS  Google Scholar 

  • Prasad MNV (2011) A state-of-the-art report on bioremediation, its applications to contaminated sites in India. Ministry of Environment & Forests, Government of India. http://www.moef.nic.in/downloads/public-information/BioremediationBook.pdf

  • Pratas J, Favas PJC, Paulo C, Rodrigues N, Prasad MNV (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. Int J Phytorem 14:221–234

    CAS  Google Scholar 

  • Rai UN, Pal A (1999) Toxic metals and phytoremediation. Enviro News, Newsletter of International Society of Environmental Botanists, India, vol 5(4)

    Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, NATO Science series IV: Earth and Environmental Sciences. Springer, New York

    Google Scholar 

  • Robson AD, Pitman JB (1983) Interactions between nutrients in higher plants. In: Lðuchli A, Bieleski RL (eds). Inorganic plant nutrition. New York: Springer, pp 147–180. (Encyclopedia of Plant Physiology, 1)

    Google Scholar 

  • Salt DE, Kato N, Kräme U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Sheppard SC (2001) Toxicants in the environment: bringing radioecology and ecotoxicology together. In: Brechignac F, Howard BJ (eds) Radioactive pollutants: impact on the environment. EDP Sciences, Les UlisCedex A, France

    Google Scholar 

  • Simon SL, Ibrahim SA (1990) Biological uptake of radium by terrestrial plants, vol 1, The environmental behaviour of radium. IAEA, Vienna, pp 545–599, Technical reports series no. 310

    Google Scholar 

  • Smolders E, Kiebooms L, Buysse J, Merckx R (1996) 137Cs uptake in spring wheat (Triticum aestivum L. Cv. Tonic) at varying K supply. II: The effect in solution culture. Plant Soil 18:211–220

    Google Scholar 

  • Soudek P, Tykva R, Vaková R, Vank T (2006) Accumulation of radioiodine from aqueous solution by hydroponically cultivated sunflower (Helianthus annuus L.). Environ Exp Bot 57:220–225

    CAS  Google Scholar 

  • Soudek P, Petrová S, Benesová D, Tykva R, Vanková R, Vanek T (2007) Comparison of 226Ra nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period. J Environ Radioact 97:76–82

    CAS  Google Scholar 

  • Soudek P, Tykva R, Vank T (2004) Laboratory analyses of Cs uptake by sunflower, reed and poplar. Chemosphere 55:1081–1087

    CAS  Google Scholar 

  • Stewart BD (2008) The dominating influence of calcium on the biogeochemical fate of uranium. Ph.D. thesis, Stanford University, USA

    Google Scholar 

  • Tang S, Willey NJ (2003) Uptake of 134Cs by four species from the Asteraceae and two varieties from the Chenopodiaceae grown in two types of Chinese soil. Plant Soil 250:75–81

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 939161

    Google Scholar 

  • Tensho K, Yeh KL, Mitsui S (1961) The uptake of strontium and cesium by plants from soil with special reference to the unusual cesium uptake by lowland rice and its mechanism. Soil Sci Plant Nutr 6:176–183

    Google Scholar 

  • Trapp S, Matthies M, Scheunert I, Topp EM (1990) Modelling the bioconcentration of organic chemicals in plants. Environ Sci Technol 24:1246–1252

    CAS  Google Scholar 

  • USNRC: U.S. Nuclear Regulatory Commission, Washington, DC (2003) Literature review and assessment of plant and animal transfer factors used in performance assessment modelling. Pacific Northwest National Laboratory. NUREG/CR-6825, PNNL-14321

    Google Scholar 

  • Valcke E, Cremers A (1994) Sorption-desorption dynamics of radiocesium in organic matter soils. Sci Total Environ 157:275–283

    CAS  Google Scholar 

  • Voronina AV, Blinova MO, Semenischev VS, Gupta DK (2015) Returning lands, contaminated as a result of radiation accidents, to farming use. J Environ Radioact 144:103–112

    CAS  Google Scholar 

  • Walther C, Gupta DK (2015) Chemistry of radionuclides in the environment: influence of chemical speciation and plant uptake on radionuclide migration. Springer, Germany. ISBN 978-3-319-22170-0

    Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003) Chelate assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant soil 249: 83–89

    Google Scholar 

  • Yamashita J, Enomoto T, Yamada M, Ono T, Hanafusa T, Nagamatsu T, Shoji Sonoda S, Yamamoto Y (2014) Estimation of soil-to-plant transfer factors of radiocesium in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident. J Plant Res 127:11–22

    CAS  Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    CAS  Google Scholar 

  • Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645

    CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Mrs. Swagata Chatterjee for making handmade figures. S.C. and S.D. are thankful to Director, DRDO, Assam, India. The authors apologize for the many colleagues who are not referenced in this work due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, D.K., Chatterjee, S., Datta, S., Voronina, A.V., Walther, C. (2016). Radionuclides: Accumulation and Transport in Plants. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 241. Reviews of Environmental Contamination and Toxicology, vol 241. Springer, Cham. https://doi.org/10.1007/398_2016_7

Download citation

Publish with us

Policies and ethics