Skip to main content

Degradation Processes of Pesticides Used in Potato Cultivations

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 242

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 242))

Abstract

Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.

Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).

Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.

This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Daim M, El-Bialy BE, Rahman HGA, Radi AM, Hefny HA, Hassan AM (2016) Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: biochemical and histopathological studies. Biomed Pharmacother 77:79–85

    CAS  Google Scholar 

  • Alalm MG, Tawfik A, Ookawara S (2015) Combined solar advanced oxidation and PAC adsorption for removal of pesticides from industrial wastewater. J Mater Environ 6(3):800–809

    CAS  Google Scholar 

  • Allinson G, Zhang P, Bui AD, Allinson M, Rose G, Marshall S, Pettigrove V (2015) Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ Sci Pollut Res 22:10214–10226. doi:10.1007/s11356-015-4206-3

    Article  CAS  Google Scholar 

  • Ansari RW, Shukla RK, Yadav RS, Seth K, Pant AB, Singh D, Agrawal AK, Islam F, Khanna VK (2012) Cholinergic dysfunctions and enhanced oxidative stress in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats. Neurotox Res 22:292–309. doi:10.1007/s12640-012-9313-z

    Article  CAS  Google Scholar 

  • Antwi FB, Reddy GVP (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40:915–923. doi:10.1016/j.etap.2015.09.023

    Article  CAS  Google Scholar 

  • Bailey AM, Coffey MD (1985) Biodegradation of metalaxyl in avocado soils. Phytopathology 75:135–137

    CAS  Google Scholar 

  • Bakırcı GT, Acay DBY, Bakırcı F, Ötles S (2014) Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem 160:379–392

    Google Scholar 

  • Balfour NJ, Carreck NL, Blanchard HE, Ratnieks FLW (2015) Size matters: significant negative relationship between mature plant mass and residual neonicotinoid levels in seed-treated oilseed rape and maize crops. Agric Ecosyst Environ 215:85–88

    Google Scholar 

  • Barceloux DG (2008) Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.). In: Barceloux DG (ed) Medical toxicology of natural substances: foods, fungi, medicinal herbs, toxic plants, and venomous animals. Wiley, Hoboken, NJ, pp 77–83

    Google Scholar 

  • Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pest Biochem Phys 121:78–87

    CAS  Google Scholar 

  • Beketov MA, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27:461–470

    CAS  Google Scholar 

  • BermĂșdez-Couso A, NĂłvoa-Muñoz JC, Arias-EstĂ©vez M, FernĂĄndez-Calviño D (2013) Influence of different abiotic and biotic factors on the metalaxyl and carbofuran dissipation. Chemosphere 90:2526–2533. doi:10.1016/j.chemosphere.2012.10.090

    Article  CAS  Google Scholar 

  • Bhaskar N, Shahani L, Taparia N, Bhatnagar P (2012) Effect of deltamethrin containing formulation on developing chick embryo: morphological and skeletal changes. Int J Toxicol Pharmacol Res 4:81–87

    Google Scholar 

  • Bhaskar N, Shahani L, Bhatnagar P (2015) Toxicological implications of a commercial formulation of deltamethrin (DecisÂź) in developing chick embryo. Hum Ecol Risk Assess. doi:10.1080/10807039.2015.1071647

    Article  Google Scholar 

  • Biziuk M (2001) Pestycydy—występowanie, oznaczanie i unieszkodliwianie. Wydawnictwo Naukowo-Techniczne, Warszawa

    Google Scholar 

  • Blacquiere T, Smagghe G, Van Gestel CA, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992

    CAS  Google Scholar 

  • Bonmatin J-M, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell AED, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67. doi:10.1007/s11356-014-3332-7

    Article  CAS  Google Scholar 

  • Buerge IJ, Poiger T, Muller MD, Buser HR (2003) Enantioselective degradation of metalaxyl in soils: chiral preference changes with soil pH. Eviron Sci Technol 37:2668–2674

    CAS  Google Scholar 

  • Burrows HD, Canle M, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B Biol 67:71–108. doi:10.1016/S1011-1344(02)00277-4

    Article  CAS  Google Scholar 

  • Cao Y, Tang H, Chen D, Li L (2015) A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC–MS/MS. J Chromatogr B 998–999:72–79. doi:10.1016/j.jchromb.2015.06.013

    Article  CAS  Google Scholar 

  • Carreck NL, Ratnieks FLW (2014) The dose makes the poison: have ‘field realistic’ rates of exposure of bees to neonicotinoid insecticide been overestimated in laboratory studies. J Apicult Res 53:607–614

    Google Scholar 

  • Chang DC, Park CS, Kim SY, Lee YB (2012) Growth and tuberization of hydroponically grown potatoes. Potato Res 55:69–81

    Google Scholar 

  • Chang J, Wang Y, Wang H, Li J, Xu P (2016) Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm. Chemosphere 144:1351–1357. doi:10.1016/j.chemosphere.2015.10.011

    Article  CAS  Google Scholar 

  • Chen S, Liu W (2008) Toxicity of chiral pesticide rac-metalaxyl and R-metalaxyl to Daphnia magna. Bull Environ Contam Toxicol 81:531–534. doi:10.1007/s00128-008-9567-6

    Article  CAS  Google Scholar 

  • Chen S, Lai K, Li Y, Hu M, Zhang Y, Zen Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-0. Appl Microbiol Biotechnol 90:1471–1483

    CAS  Google Scholar 

  • Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang LH (2013) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23

    CAS  Google Scholar 

  • Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, Zhou J, He F, Hu M, Zhang LH (2015) Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep 5:8784. doi:10.1038/srep08784

    Article  CAS  Google Scholar 

  • Chiipanthenga M, Maliro M, Demo P, Njoloma J (2012) Potential of aeroponics system in the production of quality potato (Solanum tuberosum l.) seed in developing countries. J Biotechnol 11:3993–3999

    Google Scholar 

  • Colombo R, Ferreira TCR, Suellen AA, Carneiro RL, Lanza MRV (2013) Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction. J Environ Manage 118:32–39

    CAS  Google Scholar 

  • Commission Regulation 441/2012, 24 May 2012, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for bifenazate, bifenthrin, boscalid, cadusafos, chlorantraniliprole, chlorothalonil, clothianidin, cyproconazole, deltamethrin, dicamba, difenoconazole, dinocap, etoxazole, fenpyroximate, flubendiamide, fludioxonil, glyphosate, metalaxyl-M, meptyldinocap, novaluron, thiamethoxam, and triazophos in or on certain products

    Google Scholar 

  • Commission Regulation 524/2011, 26 May 2011, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for biphenyl, deltamethrin, ethofumesate, isopyrazam, propiconazole, pymetrozine, pyrimethanil and tebuconazole in or on certain products

    Google Scholar 

  • Commission Regulation 617/2014, 3 June 2014, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for ethoxysulfuron, metsulfuron-methyl, nicosulfuron, prosulfuron, rimsulfuron, sulfosulfuron and thifensulfuron-methyl in or on certain products

    Google Scholar 

  • Commission Regulation 834/2013, 30 August 2013, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acequinocyl, bixafen, diazinon, difenoconazole, etoxazole, fenhexamid, fludioxonil, isopyrazam, lambda-cyhalothrin, profenofos and prothioconazole in or on certain products

    Google Scholar 

  • Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116

    CAS  Google Scholar 

  • Council Directive 98/83/EC, 3 November 1998, on the quality of water intended for human consumption

    Google Scholar 

  • CycoƄ M, Ć»mijowska A, Piotrowska-Seget Z (2014) Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. Int J Environ Sci Technol 11:1305–1316. doi:10.1007/s13762-013-0322-0

    Article  CAS  Google Scholar 

  • Dąbrowska D, Kot-Wasik A, Namieƛnik J (2002) Degradacja związkĂłw organicznychw ƛrodowisku. Chemia i InĆŒynieria Ekologiczna 10:1077–1083

    Google Scholar 

  • de Lafontaine Y, Beauvais C, Cessna AJ, Gagnon P, Hudon C, Poissant L (2014) Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin. Sci Total Environ 479–480:1–10. doi:10.1016/j.scitotenv.2014.01.094

    Article  CAS  Google Scholar 

  • de Urzedo AP et al (2007) Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry. J Mass Spectrom 42:1319–1325. doi:10.1002/jms.1204

    Article  CAS  Google Scholar 

  • Devisri S, Iyer PR (2013) Degradation of deltamethrin by organisms isolated from Koovam river water. Int J Curr Microbiol App Sci 2(10):106–111

    Google Scholar 

  • Dinelli G, Vicari A, Accinelli C (1998) Degradation and side effects of three sulfonylurea herbicides in soil. J Environ Qual 27:1459–1464. doi:10.2134/jeq1998.00472425002700060023x

    Article  CAS  Google Scholar 

  • Doe JE, Lander DR, Doerrer NG, Heard N, Hines RN, Lowit AB, Pastoor T, Phillips RD, Sargent D, Sherman JH, Tanir JY, Embry MR (2016) Use of the RISK21 roadmap and matrix: human health risk assessment of the use of a pyrethroid in bed netting. Crit Rev Toxicol 46:54–73. doi:10.3109/10408444.2015.1082974

    Article  CAS  Google Scholar 

  • EFSA (2005) Conclusion regarding the peer review of the pesticide risk assessment of the active substance rimsulfuron. EFSA Sci Rep 45:1–61

    Google Scholar 

  • Elliott M, Janes NF (1978) Synthetic pyrethroids—a new class of insecticide. Chem Soc Rev 7:473–505. doi:10.1039/CS9780700473

    Article  CAS  Google Scholar 

  • Europa (2013) Bees & pesticides: commission goes ahead with plan to better protect bees. http://ec.europa.eu/food/plant/pesticides/max_residue_levels/index_en.htm. Accessed 26 Jan 2016

  • Fang L, Zhang S, Chen Z, Du H, Zhu Q, Dong Z, Li H (2016) Risk assessment of pesticide residues in dietary intake of celery in China. Reg Toxicol Pharmacol 73:578–586

    Google Scholar 

  • Feo ML, Ginebreda A, Eljarrat E, BarcelĂł D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162. doi:10.1016/j.jhydrol.2010.08.012

    Article  CAS  Google Scholar 

  • Fetoui H, Garoui EM, Zeghal N (2009) Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Exp Toxicol Pathol 61:189–196. doi:10.1016/j.etp.2008.08.002

    Article  CAS  Google Scholar 

  • Grant RJ, Daniell TJ, Betts WB (2002) Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol 92(3):534–540. doi:10.1046/j.13652672.2002.01558.x

    Article  CAS  Google Scholar 

  • Guo W, Zhang F, Lin C, Wang LZ (2012) Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv Mater 24(35):4761–4764

    CAS  Google Scholar 

  • Guzsvany V, Csandi J, Gaal F (2006) NMR study of the influence of pH on the persistence of some neonicotinoids in water. Acta Chim Slov 53:52–57

    CAS  Google Scholar 

  • Han J, Fang P, Xu X, Li-Zheng X, Shen H, Ren Y (2015) Study of the pesticides distribution in peel, pulp and paper bag and the safety of pear bagging. Food Control 54:338–346. doi:10.1016/j.foodcont.2015.02.021

    Article  CAS  Google Scholar 

  • He LM, Troiano J, Wang A, Goh K (2008) Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev Environ Contam Toxicol 195:71–91

    CAS  Google Scholar 

  • Hem L, Park JH, Shim JH (2010) Residual analysis of insecticides (Lambda-cyhalothrin, Lufenuron, Thiamethoxam and Clothianidin) in Pomegranate using GC-ECD or HPLC-UVD. Korean J Environ Agric 29:257–265. doi:10.5338/KJEA.2010.29.3.257

    Article  Google Scholar 

  • Hooker WJ (1981) Compendium of potato diseases. American Phytopathological Society, St Paul

    Google Scholar 

  • Hunt L, Bonetto C, Resh VH, Buss DF, Fanelli S, Marrochi N, Lydy MJ (2016) Insecticide concentrations in stream sediments of soy production regions of South America. Sci Total Environ 547:114–124. doi:10.1016/j.scitotenv.2015.12.140

    Article  CAS  Google Scholar 

  • Jalali AM, Van Leeuwen T, Tirry L, De Clercq P (2009) Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica 37:323–326. doi:10.1007/s12600-009-0051-6

    Article  CAS  Google Scholar 

  • Kalathoor R, Botterweck J, SchĂ€ffer A, Schmidt B, Schwarzbauer J (2015) Quantitative and enantioselective analyses of non-extractable residues of the fungicide metalaxyl in soil. J Soil Sediment 15:659–670. doi:10.1007/s11368-014-1027-9

    Article  CAS  Google Scholar 

  • Katagi T (2002) Abiotic hydrolysis of pesticides in the aquatic environment. Rev Environ Contam Toxicol 175:79–261

    CAS  Google Scholar 

  • Kearney PC, Kaufman DD (1969) Degradation of herbicides. Dekker Inc, New York

    Google Scholar 

  • Kolo RJ, Lamai S, Ojutiku RO (2010) Subacute toxicity of Karate to Sarotherodon galilieus (Linne,1758). J Water Chem Technol 32:107–112. doi:10.3103/S1063455X10020074

    Article  Google Scholar 

  • Kondrakow AO, Igantev AN, Frimmel FH, Brase S, Hom H, Revelsky AI (2014) Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: a comparative study. Appl Catal B Environ 160–161:106–114

    Google Scholar 

  • Koprucu K, Aydm R (2004) The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic Biochem Physiol 80:47–53. doi:10.1007/s10653-007-9108-y

    Article  CAS  Google Scholar 

  • KryczyƄski S (2010) Wirusologia roƛlinna. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Kungolos A, Emmanouil C, Tsiridis V, Tsiropoulos N (2009) Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests. Sci Total Environ 1:4610–4615. doi:10.1016/j.scitotenv.2009.04.038

    Article  CAS  Google Scholar 

  • Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000) Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados. Chemosphere 41:1441–1449

    CAS  Google Scholar 

  • Laberge M, Rollinson R (2013) Degradation of thiamethoxam via photocatalysis: kinetics, mineralization, and toxicity. Worcester Polytechnic Institute, Worcester

    Google Scholar 

  • Lazzarini M, Salum C, Del Bel EA (2005) Combined treatment of ascorbic acid or alpha-tocopherol with dopamine receptor antagonist or nitric oxide synthase inhibitor potentiates cataleptic effect in mice. Psychopharmacology (Berl) 181:71–79

    CAS  Google Scholar 

  • Lee JH, Shan G, Watanabe T, Stoutamire DW, Gee SJ, Hammock BD (2002) Enzyme-linked immunosorbent assay for the pyrethroid deltamethrin. J Agric Food Chem 50:5526–5532. doi:10.1021/jf030519p

    Article  CAS  Google Scholar 

  • Li Y, Dong F, Liu X, Xu J, Chen X, Han Y, Cheng Y, Jian Q, Zheng Y (2013) Enantioselective separation and transformation of metalaxyl and its major metabolite metalaxyl acid in tomato and cucumber. Food Chem 141:10–17

    CAS  Google Scholar 

  • Liquing Z, Guoguang L, Dezhi S, Kun Y (2006) Hydrolysis of thiamethoxam. Environ Contam Toxicol 6:942–949. doi:10.5902/2179460X17302

    Article  Google Scholar 

  • Liu P, Liu Y, Liu Q, Liu J (2009) Photodegradation mechanism of deltamethrin and fenvalerate. J Environ Sci 22:1123–1128

    Google Scholar 

  • Liu L, Liu Z, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46(4):1101–1112

    CAS  Google Scholar 

  • Liu PY, Li B, Liu HD, Tian L (2014a) Photochemical behavior of fenpropathrin and lambda cyhalothrin in solution. Environ Sci Pollut Res 21:1993–2001

    CAS  Google Scholar 

  • Liu T, Zhu L, Han Y, Wang J, Wang J, Zhao Y (2014b) The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida). Environ Toxicol Chem 33(10):2344–2350

    CAS  Google Scholar 

  • Lopes RP, de Urzedo APFM, Nascentes CC, Augusti R (2008) Degradation of the insecticides thiamethoxam and imidacloprid by zero-valent metals exposed to ultrasonic irradiation in water medium: electrospray ionization mass spectrometry monitoring. Rapid Commun Mass Spectrom 22:3472–3480

    CAS  Google Scholar 

  • Maienfisch P (2001) Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag Sci 57:906–913

    CAS  Google Scholar 

  • Maienfisch P (2006) Synthesis and properties of thiamethoxam and related compounds. Z Naturforsch 61b:353–359

    Google Scholar 

  • Main AR, Headley JV, Peru KM, Michel NL, Cessna AJ, Morrissey CA (2014) Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s prairie Pothole region. PLoS One 9:e92821. doi:10.1371/journal.pone.0092821

    Article  CAS  Google Scholar 

  • Maloney SE, Maule A, Smith ARW (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876

    CAS  Google Scholar 

  • Manigandan G, Nelson R, Jeevan P (2013) Biodegradation of lambda cyhalothrin by Pseudomonas fluorescens and Trichoderma viridae. J Microbiol Biotechnol Res 3:42–44

    Google Scholar 

  • Maradani A, Sabahi Q, Resekh A, Almasi A (2016) Lethal and sublethal effects of three insecticides on the aphid parasitoid, Lysiphlebus fabarum Marshall (Hymenoptera: Aphidiidae). Phytoparasitica 8:1–8

    Google Scholar 

  • Martins JM, Marmoud A (1999) Transport of rimsulfuron and its metabolites in soil columns. Chemosphere 38(3):601–616. doi:10.1016/S0045-6535(98)00197-0

    Article  CAS  Google Scholar 

  • Martins JMF, Chevre N, Spack L, Tarradellas J, Mermoud A (2001) Degradation in soil and water and ecotoxicity of rimsulfuron and its metabolites. Chemosphere 45:515–522. doi:10.1016/S0045-6535(01)00040-6

    Article  CAS  Google Scholar 

  • Marucchini C, Zadra C (2002) Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plants. Chirality 14:32–38

    CAS  Google Scholar 

  • MasiĂĄ A, Campo J, VĂĄzquez-Roig P, Blasco C, PicĂł Y (2013) Screening of currently used pesticides in water, sediments and biota of the Guadalquivir river basin (Spain). J Hazard Mater 263:95–104

    Google Scholar 

  • Massoud AH, Derbalah AS, Brelal El-Sayed B (2008) Microbial detoxification of metalaxyl in aquatic system. J Environ Sci 20:262–267

    CAS  Google Scholar 

  • MickaĂ«l H et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350. doi:10.1126/science.1215039

    Article  CAS  Google Scholar 

  • Mir NA, Khan A, Muneer M, Vijayalakhsm S (2013) Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment. Sci Total Environ 458–460:388–398

    Google Scholar 

  • Mugni H, Paracampo A, Marrochi N, Bonetto C (2013) Acute toxicity of cypermethrin to the non-target organism Hyalella curvispina. Environ Toxicol Pharmacol 35:88–92

    CAS  Google Scholar 

  • Myresiotis KC, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310

    CAS  Google Scholar 

  • Nageswara Rao T, Venkata-Ramasubbih A, Parvathi T (2012) Development and validation of a HPLC-UV method for simultaneous determination of five sulfonylurea herbicide residues in soybean oil followed by Matrix Solid-Phase Dispersion. Int J Chem Environ Pharm Res 3:117–121. doi:10.5402/2012/908795

    Article  CAS  Google Scholar 

  • Nahri-Niknafs B, Ahmadi A (2013) Photodegradation of deltamethrin and fenvalerate under simulated solar light irradiation and identification of photoproducts. Rev Chim 64(8):828–831

    CAS  Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic Biochem Phys 73(2):55–69. doi:10.1016/S0048-3575(03)00065-8

    Article  CAS  Google Scholar 

  • Palanisamy B, Babu CM, Sundaravel S, Anandan S, Murugesan V (2013) Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252–253:233–242

    Google Scholar 

  • PĂĄlenĂ­kovĂĄ A, MartĂ­nez-DomĂ­nguez G, Arrebola FJ, Romero-GonzĂĄlez R, HrouzkovĂĄ S, Frenich AG (2015) Determination of pesticides and transformation products in Ginkgo biloba nutraceutical products by chromatographic techniques coupled to mass spectrometry. Food Anal Methods 8:20194–22201

    Google Scholar 

  • Pandey G, Dorrian SJ, Russell J, Oakeshott JG (2009) Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun 380:710–714. doi:10.1016/j.bbrc.2009.01.156

    Article  CAS  Google Scholar 

  • Pang N, Wang T, Hu J (2016) Method validation and dissipation kinetics of four herbicides in maize and soil using QuEChERS sample preparation and liquid chromatography tandem mass spectrometry. Food Chem 190:793–800

    CAS  Google Scholar 

  • Patel N, Jaiswall R, Warang T, Scarduelli G, Dashora A, Ahuja BL, Kothan DC, Miotello A (2014) Efficient photocatalytic degradation of organic water pollutants using V–N-codoped TiO2 thin films. Appl Catal B Environ 150–151:74–81

    Google Scholar 

  • Pavan FA, Dallago RM, Zanella R, Martins AF (1999) Determination of deltamethrin in cattle dipping baths by high-performance liquid chromatography. J Agric Food Chem 47:174–176

    CAS  Google Scholar 

  • Peackock TJ, Mikell AT Jr, Moore MT, Smith S Jr (2014) Application of a redox gradostat reactor for assessing rhizosphere microorganism activity on lambda-cyhalothrin. Bull Environ Contam Toxicol 92:347–351. doi:10.1007/s00128-014-1202-0

    Article  CAS  Google Scholar 

  • Pohorecka K, Skubida P, Miszczak A, Semkiw P, Sikorski P, ZagibajƂo K, Teper D, KoƂtowski Z, ZdaƄska D, Skubida M, Bober A (2012) Residues of neonicotinoid insecticides in bee collected plant materials from oilseed rape crops and their effect on bee colonies. J Apic Sci 56:115–134

    Google Scholar 

  • Rahman IQ, Ahmad M, Misra KS, Lohani M (2013) Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–174

    CAS  Google Scholar 

  • Rana S, Jindal V, Mandal K, Kaur G, Gupta VK (2015) Thiamethoxam degradation by Pseudomonas and Bacillus strains isolated from agricultural soils. Environ Monit Assess 187:300. doi:10.1007/s10661-015-4532-4

    Article  CAS  Google Scholar 

  • Rosenbom AE, KjĂŠr J, Olsen P (2010) Long-term leaching of rimsulfuron degradation products through sandy agricultural soils. Chemosphere 79:830–838

    CAS  Google Scholar 

  • Rosenkrantz RT, Cedergreen N, Baun A, Kusk KO (2013) Influence of pH, light cycle, and temperature on ecotoxicity of four sulfonylurea herbicides towards Lemna gibba. Ecotoxicology 22:33–41

    CAS  Google Scholar 

  • Rouchaud J, Neus O, Callens D, Bulcke R (1997) Soil metabolism of the herbicide rimsulfuron under laboratory and field conditions. J Agric Food Chem 45:3283–3291

    CAS  Google Scholar 

  • Ruan Z, Zhai Y, Song J, Shi Y, Li K et al (2013) Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of ochrobactrum anthropi YZ-1. PLoS One 8(10):e77329. doi:10.1371/journal.pone.0077329

    Article  CAS  Google Scholar 

  • Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees—a risk assessment. PLoS One 9:e94482

    Google Scholar 

  • Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng 33:91–98

    CAS  Google Scholar 

  • Schneider GE, Koeppe MK, Naidu MV, Horne P, Brown HM, Mucha CF (1993) Fate of rimsulfuron in the environment. J Agric Food Chem 41:2404–2410

    Google Scholar 

  • Schwartz BJ, Sparrow FK, Heard EN, Thede BM (2000) Simultaneous derivatization and trapping of volatile products from aqueous photolysis of thiamethoxam insecticide. J Agric Food Chem 48:4671–4675. doi:10.1021/jf990966y

    Article  CAS  Google Scholar 

  • Scrano L, Bufo SA, Peruccci P, Meallier P, Mansour M (1999) Photolysis and hydrolysis of rimsulfuron. Pestic Sci 55:955–961. doi:10.1007/3-540-26531-7_46

    Article  CAS  Google Scholar 

  • SeƄczuk W (2005) Toksykologia wspóƂczesna. Wydawnictwo Lekarskie PZWL, Warszawa

    Google Scholar 

  • Sharma D, Awasthi MD (1997) Adsorption and movement of metalaxyl in soils under unsaturated flow conditions. Plant Soil 195:293–298

    CAS  Google Scholar 

  • Sheets LP, Li AA, Minnema DJ, Collier RH, Creeke MR, Peffer RC (2015) A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit Rev Toxicol 46:153–190

    Google Scholar 

  • Shen C-C, Shen D-S, Shentu J-L, Wang M-Z, Wan M-Y (2015a) Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)? Environ Sci Proc Imp 17:2074–2081

    CAS  Google Scholar 

  • Shen X, Zemin X, Zhang X, Yang F (2015b) Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin. Sci Total Environ 532:415–419

    CAS  Google Scholar 

  • Sikorska K, Wędzisz A (2009) Nowoczesne pestycydy—spinosad. Bromat Chem Toksykol 2:203–212

    Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int 22:5–34

    CAS  Google Scholar 

  • Sivaperumal P, Anand P, Riddhi L (2015) Rapid determination of pesticide residues in fruits and vegetables, using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry. Food Chem 168:356–365

    CAS  Google Scholar 

  • Ć ojić D, Despotović V, Orcić D, SzabĂł E, Arany E, Armakoviƛ S, IllĂ©s E, Gajda-Schrantz K, Dombi A, Alapi T, Sajben-Nagy E, PalĂĄgyi A, VĂĄgvölgyi SC, Manczinger L, Bjelica L, Abramović B (2012) Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: kinetics, degradation intermediates and toxicity. J Hydrol 472–473:314–327

    Google Scholar 

  • Song J et al (2013) Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresour Technol 140:243–248. doi:10.1016/j.biortech.2013.02.086

    Article  CAS  Google Scholar 

  • Song H, Zhou Z, Liu Y, Deng S, Xu H (2015) Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. strain JQ-41. Curr Microbiol 71:326–332

    CAS  Google Scholar 

  • Starner K, Goh KS (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull Environ Contam Toxicol 88(3):316–321. doi:10.1007/s00128-011-0515-5

    Article  CAS  Google Scholar 

  • Stoner KA, Eitzer BD (2012) Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS One 7:e39114

    CAS  Google Scholar 

  • Sukul P, Spiteller M (2000) Metalaxyl: persistence, degradation, metabolism and analytical methods. Rev Environ Contam Toxicol 164:1–26

    CAS  Google Scholar 

  • Sulimma L, Bullach A, Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2013) Enantioselective degradation of the chiral fungicides metalaxyl and furalaxyl by Brevibacillus brevis. Chirality 25:336–340

    CAS  Google Scholar 

  • Szpyrka E, Kurdziel A, Matyaszek A, Podbielska M, Rupar J, SƂowik-Borowiec M (2015) Evaluation of pesticide residues in fruits and vegetables from the region of south-eastern Poland. Food Control 48:137–142

    CAS  Google Scholar 

  • Tabaeran IV, Narahashi T (1998) Potent modulation of tetrodotoxin sensitive and tetrodotoxin resistant sodium channels by the type II pyrethroid deltamethrin. Pharmacol Therapeut 284:958–965

    Google Scholar 

  • Taillebois E, Langlois P, Cunha T, Seraphin D, Thany SH (2014) Synthesis and biological activity of fluorescent neonicotinoid insecticide thiamethoxam. Bioorg Med Chem Lett 24:3552–3555. doi:10.1016/j.bmcl.2014.05.052

    Article  CAS  Google Scholar 

  • Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82

    CAS  Google Scholar 

  • The potato: tuber, International year of potato 2008. http://www.fao.org/potato-2008/en/potato/pests.html. Accessed 8 Sept 2015

  • The PPDB: Pesticides Properties DataBase, University of Hertfordshire. http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Accessed 8 Sept 2015

  • Tuzmen N, Canadan N, Kaya E, Demiryas N (2008) Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanism and lipid peroxidation in rat liver. Cell Biochem Funct 26:119–124. doi:10.1002/cbf.1411

    Article  CAS  Google Scholar 

  • University of Kentucky, College of Agriculture, Food and Environment. http://www2.ca.uky.edu/entomology/entfacts/ef304.asp. Accessed 8 Sept 2015

  • Ural MS, Saglam N (2005) A study on the acute toxicity of pyrethroid deltamethrin on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Pestic Biochem Phys 83:124–131. doi:10.1016/j.pestbp.2005.04.004

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Van Smeden JM, Bekele RS, Dierick W, De Gelder DM, Noteboom M, Roessink I (2016) Acute and chronic toxicity of neonicotinoids to nymphs of a mayfly species and some notes on seasonal differences. Environ Toxicol Chem 35:128–133

    Google Scholar 

  • Van Dijk TC, Van Staalduinen MA, Van der Sluijs JP (2013) Macroinvertebrate decline in surface water polluted with imidacloprid. PLoS One 8:e62374

    Google Scholar 

  • Wang S, Kimber SWL, Kennedy IR (1997) The dissipation of lambda-cyhalothrin from cotton production systems. J Environ Sci Health B 32:335–352

    Google Scholar 

  • Wang M, Guiquin Y, Wang X, Yao Y, Min H, Lu Z (2011) Nicotine degradation by two novel bacterial isolates of Acinetobacter sp. TW and Sphingomonas sp. TY and their responses in the presence of neonicotinoid insecticides. J Microbial Biotechnol 27:1633–1640

    CAS  Google Scholar 

  • Wang M, Zhang Q, Cong L, Yin W, Wang M (2014) Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi. Chemosphere 95:241–246. doi:10.1016/j.chemosphere.2013.08.084

    Article  CAS  Google Scholar 

  • Webb ME, Smith AG (2011) Pantothenate biosynthesis in higher plants. Adv Bot Res 58:204

    Google Scholar 

  • Wilson PC, Whitwell T, Klaine SJ (2001) Metalaxyl toxicity, uptake, and distribution in several ornamental plant species. J Environ Qual 30:411–417

    CAS  Google Scholar 

  • Wu Y, Liu X, Dong F, Xu J, Zheng Y (2012) Dissipation and residues of rimsulfuron in potato and soil under field conditions. Bull Environ Contam Toxicol 89:1264–1267

    CAS  Google Scholar 

  • Xiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G (2015) Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biotechnol 99:2849–2859. doi:10.1007/s00253-014-6164-y

    Article  CAS  Google Scholar 

  • Xu P, Diao J, Liu D, Zhou Z (2011) Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 83:1074–1079. doi:10.1016/j.chemosphere.2011.01.047

    Article  CAS  Google Scholar 

  • Yao K, Zhu L, Duan Z, Chen Z, Li Y, Zhu X (2008) Comparison of R-metalaxyl and rac-metalaxyl in acute, chronic, and sublethal effect on aquatic organisms: Daphnia magna, Scenedesmus quadricanda, and Danio rerio. Environ Toxicol 24:148–156. doi:10.1002/tox.20415

    Article  CAS  Google Scholar 

  • Yao W, Zhang B, Huang C, Ma C, Song X, Xu Q (2012) Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J Mater Chem 22:4050–4055

    CAS  Google Scholar 

  • Yousef MI (2010) Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem Toxicol 48:1152–1159. doi:10.1016/j.fct.2010.02.002

    Article  CAS  Google Scholar 

  • Yu C, Li G, Kumar S, Yang K, Jin R (2014) Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv Mater 26(6):892–898

    CAS  Google Scholar 

  • Zabar R, Komel T, Fabjan J, Bavcon Kralj M, TrebĆĄe P (2012) Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin. Chemosphere 89:293–301. doi:10.1016/j

    Google Scholar 

  • Zhang P, Zhu W, Qiu J, Wang D, Wang X, Wang Y, Zhou Z (2014) Evaluating the enantioselective degradation and novel metabolites following a single oral dose of metalaxyl in mice. Pest Biochem Physiol 116:32–39. doi:10.1016/j.pestbp.2014.09.008

    Article  CAS  Google Scholar 

  • Zhang H et al (2016) Biodegradation potential of deltamethrin by the Bacillus cereus strain Y1 in both culture and contaminated soil. Int Biodeter Biodegr 106:53–59

    Google Scholar 

  • Zhao MR, Liu WP (2009) Enantioselectivity in the immunotoxicity of the insecticide acetofenate in an in vitro model. Environ Toxicol Chem 28:578–585

    CAS  Google Scholar 

  • Zhao M, Chen F, Wang C, Zhang Q, Gan J, Liu W (2010) Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. Environ Pollut 158:1968–1973

    CAS  Google Scholar 

  • Zheng W, Liu W (1999) Kinetics and mechanism of the hydrolysis of imidacloprid. Pest Sci 55:482–485

    CAS  Google Scholar 

  • Zheng S, Jiang W, Cai Y, Dionysiou DD, O’Shea EK (2014) Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. Catal Today 224:83–88

    CAS  Google Scholar 

  • Zhou G et al (2012) Biodegradation of the neonictoinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizbacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol 97:4065–4074. doi:10.1007/s00253-012-4638-3

    Article  CAS  Google Scholar 

  • Zuno-Floriano FG et al (2012) Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) Alpha Variety. PLoS One 7(2):e31221. doi:10.1371/journal.pone.0031221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurek, M., BarchaƄska, H., Turek, M. (2016). Degradation Processes of Pesticides Used in Potato Cultivations. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 242. Reviews of Environmental Contamination and Toxicology, vol 242. Springer, Cham. https://doi.org/10.1007/398_2016_13

Download citation

Publish with us

Policies and ethics