Advertisement

NMR Spectroscopic Techniques for Determining Acidity and Basicity

  • Eike BrunnerEmail author
  • Harry Pfeifer
Chapter
Part of the Molecular Sieves book series (SIEVES, volume 6)

Abstract

Solid acids and bases have found numerous applications in heterogeneous catalysis. However, the characterization of the acidic and basic properties of solids is relatively complicated compared to that of liquids. This contribution summarizes the state of the art in the spectroscopic determination of acidity and basicity by NMR methods, especially with respect to zeolites. Zeolites are porous inorganic crystals built from TO4 tetrahedra. In original zeolites, T represents Si or Al. The latter atoms may be replaced to some extent by other elements like B, Ga, Be, Ti etc. Other classes of microporous materials are based, e.g. on AlPO4 compounds. The ability of zeolites to act as acid catalysts had already been described in the early 1960s and has remained an interesting subject of research. In recent years, zeolites have also found increasing interest as basic catalysts. The presence of both acidic and basic sites is responsible for the broad applicability of zeolites as catalysts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weitkamp J (1991) Stud Surf Sci Catal 65:21 Google Scholar
  2. 2.
    Haag WO (1994) Stud Surf Sci Catal 84:1375 Google Scholar
  3. 3.
    Naber JE, de Jong KP, Stork WHJ, Kuipers HPCE, Post MFM (1994) Stud Surf Sci Catal 84:2197 Google Scholar
  4. 4.
    Barthomeuf D (1994) In: Fraissard J, Petrakis L (eds) Acidity and basicity of solids, NATO ASI Series C, vol 444. Kluwer Academic, Dordrecht, p 181 Google Scholar
  5. 5.
    Kouwenhoven HW, Gunnewegh EA, van Bekkum H (1996) In: Weitkamp J, Lücke B (eds) Proceedings 9601 of the DGMK-conference: catalysis on solid acids and bases, Berlin, 14–15 March 1996. DGMK, Hambuerg, p 9 Google Scholar
  6. 6.
    Hölderich W, Gallei E (1985) Ger Chem Eng 8:337 Google Scholar
  7. 7.
    Tißler A, Müller U, Unger K (1988) Nachr Chem Tech Lab 36:624 Google Scholar
  8. 8.
    Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use. Wiley, London Google Scholar
  9. 9.
    Barrer RM (1978) Zeolite and clay minerals as sorbents and molecular sieves. Academic, London Google Scholar
  10. 10.
    Meier WM, Olson DH (1992) Atlas of zeolite structure types, 3rd edn. Butterworth, London Google Scholar
  11. 11.
    Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic, London Google Scholar
  12. 12.
    Bellussi G, Rigutto MS (1994) Stud Surf Sci Catal 85:177 Google Scholar
  13. 13.
    Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) J Am Chem Soc 104:1146 Google Scholar
  14. 14.
    Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) J Am Chem Soc 106:6092 Google Scholar
  15. 15.
    Martens JA, Jacobs PA (1994) Stud Surf Sci Catal 85:653 Google Scholar
  16. 16.
    Rabo JA, Pickert PE, Stamires DN, Boyle JE (1960) Actes Du Deuxieme Congres International De Catalyse. Paris, p 2055 Google Scholar
  17. 17.
    Weisz PB, Frilette VJ (1960) J Phys Chem 64:342 Google Scholar
  18. 18.
    Curtiss LA, Brand H, Nicholas JB, Iton LE (1991) Chem Phys Lett 184:215 Google Scholar
  19. 19.
    Brunner E (1995) J Mol Struct 355:61 Google Scholar
  20. 20.
    Haag WO, Lago RM, Weisz PB (1984) Nature 309:589 Google Scholar
  21. 21.
    Ward JW (1970) J Catal 17:355 Google Scholar
  22. 22.
    Tsutsumi K, Takahashi H (1972) J Catal 24:1 Google Scholar
  23. 23.
    Beaumont R, Barthomeuf D (1972) J Catal 26:218 Google Scholar
  24. 24.
    Sanderson RT (1976) Chemical bonds and bond energy. Academic, New York Google Scholar
  25. 25.
    Jacobs PA (1982) Catal Rev-Sci Eng 24:415 Google Scholar
  26. 26.
    Jacobs PA, Mortier WJ (1982) Zeolites 2:226 Google Scholar
  27. 27.
    Pelmenschikov AG, Paukshtis EA, Stepanov VG, Pavlov VI, Yurchenko EN, Ione KG, Zhidomirov GM (1989) J Phys Chem 93:6725 Google Scholar
  28. 28.
    Kramer GJ, van Santen RA (1993) J Am Chem Soc 115:2887 Google Scholar
  29. 29.
    Schröder K-P, Sauer J, Leslie M, Catlow CRA, Thomas JM (1992) Chem Phys Lett 188:320 Google Scholar
  30. 30.
    Eichler U, Brändle M, Sauer J (1997) J Phys Chem B 101:10035 Google Scholar
  31. 31.
    Hopkins PD (1968) J Catal 12:325 Google Scholar
  32. 32.
    Lunsford JH (1968) J Phys Chem 72:4163 Google Scholar
  33. 33.
    Mirodatos C, Barthomeuf D (1981) J Chem Soc Chem Commun, p 39 Google Scholar
  34. 34.
    Lago RM, Haag WO, Mikovsky RJ, Olson DH, Hellring SD, Schmitt KD, Kerr GT (1986) Stud Surf Sci Catal 28:677 Google Scholar
  35. 35.
    Brunner E, Ernst H, Freude D, Hunger M, Krause CB, Prager D, Reschetilowski W, Schwieger W, Bergk K-H (1989) Zeolites 9:282 Google Scholar
  36. 36.
    Brunner E, Beck K, Koch M, Pfeifer H, Staudte B, Zscherpel D (1994) Stud Surf Sci Catal 84:357 Google Scholar
  37. 37.
    Zholobenko VL, Kustov LM, Kazansky VB, Loeffler E, Lohse U, Peuker C, Oehlmann G (1990) Zeolites 10:304 Google Scholar
  38. 38.
    Fritz PO, Lunsford JH (1989) J Catal 118:85 Google Scholar
  39. 39.
    Freude D, Hunger M, Pfeifer H (1982) Chem Phys Lett 91:307 Google Scholar
  40. 40.
    Freude D, Hunger M, Pfeifer H, Scheler G, Hoffmann J, Schmitz W (1984) Chem Phys Lett 105:427 Google Scholar
  41. 41.
    Pfeifer H, Freude D, Hunger M (1985) Zeolites 5:274 Google Scholar
  42. 42.
    Freude D, Hunger M, Pfeifer H (1987) Z Phys Chemie NF 152:171 Google Scholar
  43. 43.
    Engelhardt G, Jerschkewitz H-G, Lohse U, Sarv P, Samoson A, Lippmaa E (1987) Zeolites 7:289 Google Scholar
  44. 44.
    Brunner E, Ernst H, Freude D, Hunger M, Pfeifer H (1988) Stud Surf Sci Catal 37:155 Google Scholar
  45. 45.
    Pfeifer H, Ernst H (1994) Ann Rep NMR Spectrosc 28:91 Google Scholar
  46. 46.
    Pfeifer H (1994) NMR of solid surfaces. In: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR basic principles and progress, vol 31. Springer, Berlin, p 31 Google Scholar
  47. 47.
    Hunger M (1996) Solid State Nucl Magn Reson 6:1 Google Scholar
  48. 48.
    Vega AJ, Luz Z (1987) J Phys Chem 91:365 Google Scholar
  49. 49.
    Gluszak TJ, Chen DT, Sharma SB, Dumesic JA, Root TW (1992) Chem Phys Lett 190:36 Google Scholar
  50. 50.
    Ernst H, Freude D, Wolf I (1993) Chem Phys Lett 212:588 Google Scholar
  51. 51.
    Freude D, Ernst H, Wolf I (1994) Solid State Nucl Magn Reson 3:271 Google Scholar
  52. 52.
    Andrew ER, Bradbury A, Eades RG (1958) Nature (London) 182:1659 Google Scholar
  53. 53.
    Haeberlen U, Waugh JS (1968) Phys Rev 175:453 Google Scholar
  54. 54.
    Schnabel B, Haubenreisser U, Scheler G, Müller R (1976) In: Brunner H, Hausser KH, Schweitzer D (eds) Proceedings 19th Congress Ampere. Heidelberg, 27 Sept–1 Oct 1976. Groupement Ampere, Geneva, p 441 Google Scholar
  55. 55.
    Pembleton RG, Ryan LM, Gerstein BC (1977) Rev Sci Instrum 48:1286 Google Scholar
  56. 56.
    Ryan LM, Taylor RE, Paff AJ, Gerstein BC (1980) J Chem Phys 72:508 Google Scholar
  57. 57.
    Scheler G, Haubenreisser U, Rosenberger H (1981) J Magn Reson 44:134 Google Scholar
  58. 58.
    Maricq MM, Waugh JS (1979) J Chem Phys 70:3300 Google Scholar
  59. 59.
    Brunner E, Freude D, Gerstein BC, Pfeifer H (1990) J Magn Reson 90:90 Google Scholar
  60. 60.
    Brunner E, Fenzke D, Freude D, Pfeifer H (1990) Chem Phys Lett 169:591 Google Scholar
  61. 61.
    Brunner E (1990) J Chem Soc Faraday Trans 86:3957 Google Scholar
  62. 62.
    Brunner E (1993) J Chem Soc Faraday Trans 89:165 Google Scholar
  63. 63.
    Wind R (1991) In: Popov AF, Hallenga K (eds) Modern NMR techniques and their application in chemistry. Dekker, New York, p 125 Google Scholar
  64. 64.
    Stevenson RL (1971) J Catal 21:113 Google Scholar
  65. 65.
    Freude D, Klinowski J, Hamdan H (1988) Chem Phys Lett 149:355 Google Scholar
  66. 66.
    Kaplan DE, Hahn EL (1958) Le Journal de Physique et le Radium 19:821 Google Scholar
  67. 67.
    Slichter CP (1978) Principles of magnetic resonance, 2nd edn. Springer, Berlin Google Scholar
  68. 68.
    Wang P-K, Slichter CP, Sinfelt JH (1984) Phys Rev Lett 53:82 Google Scholar
  69. 69.
    Kenaston NP, Bell AT, Reimer JA (1994) J Phys Chem 98:894 Google Scholar
  70. 70.
    Fenzke D, Hunger M, Pfeifer H (1991) J Magn Reson 95:477 Google Scholar
  71. 71.
    Zscherpel D, Brunner E, Koch M (1995) Z Phys Chem 190:123 Google Scholar
  72. 72.
    Liu H, Kao H-M, Grey C (1999) J Phys Chem B 103:4786 Google Scholar
  73. 73.
    Freude D, Pfeifer H (1980) In: Rees LVC (ed) Proceedings 5th international zeolite conference. Heyden, London, p 732 Google Scholar
  74. 74.
    Andrew ER, Jasinski A (1971) J Phys C: Solid State Phys 4:391 Google Scholar
  75. 75.
    Fenzke D, Gerstein BC, Pfeifer H (1992) J Magn Reson 98:469 Google Scholar
  76. 76.
    Sarv P, Tuherm T, Lippmaa E, Keskinen K, Root A (1995) J Phys Chem 99:13763 Google Scholar
  77. 77.
    Baba T, Inoue Y, Shoji H, Uematsu T, Ono Y (1995) Microporous Mater 3:647 Google Scholar
  78. 78.
    Baba T, Komatsu N, Ono Y, Sugisawa H, Takahashi T (1998) Microporous Mesoporous Mater 22:203 Google Scholar
  79. 79.
    Baba T, Ono Y (1999) Appl Catal A: General 181:227 Google Scholar
  80. 80.
    Sauer J (1987) Mol Catal 54:312 Google Scholar
  81. 81.
    Fleischer U, Kutzelnigg W, Bleiber A, Sauer J (1993) J Am Chem Soc 115:7833 Google Scholar
  82. 82.
    Brunner E, Pfeifer H (1995) Z Phys Chemie 192:77 Google Scholar
  83. 83.
    Sauer J (1994) Stud Surf Sci Catal 84:2039 Google Scholar
  84. 84.
    Sauer J, Hill J-R (1994) Chem Phys Lett 218:333 Google Scholar
  85. 85.
    Paukshtis EA, Yurchenko EN (1983) Usp Khim 52:426 Google Scholar
  86. 86.
    Paukshtis EA, Yurchenko EN (1981) React Kinet Catal Lett 16:131 Google Scholar
  87. 87.
    Hunger M, Ernst S, Steuernagel S, Weitkamp J (1996) Microporous Mater 6:349 Google Scholar
  88. 88.
    Hunger B, von Szombathely M (1995) Z Phys Chemie 190:19 Google Scholar
  89. 89.
    Brunner E, Karge HG, Pfeifer H (1992) Z Phys Chemie 176:173 Google Scholar
  90. 90.
    Beck LW, White JL, Haw JF (1994) J Am Chem Soc 116:9657 Google Scholar
  91. 91.
    Brunner E, Beck K, Koch M, Heeribout L, Karge HG (1995) Microporous Mater 3:395 Google Scholar
  92. 92.
    Zholobenko VL, Kustov LM, Borovkov VY, Kazansky VB (1988) Zeolites 8:175 Google Scholar
  93. 93.
    Berglund B, Vaughan RW (1980) J Chem Phys 73:2037 Google Scholar
  94. 94.
    Sternberg U, Brunner E (1994) J Magn Reson A 108:142 Google Scholar
  95. 95.
    Koch M, Brunner E, Fenzke D, Pfeifer H, Staudte B (1994) Stud Surf Sci Catal 84:709 Google Scholar
  96. 96.
    White JL, Beck LW, Haw JF (1992) J Am Chem Soc 114:6182 Google Scholar
  97. 97.
    Kubelková L, Beran S, Lercher JA (1989) Zeolites 9:539 Google Scholar
  98. 98.
    Kustov LM, Kazansky VB, Beran S, Kubelková L, Jirù P (1987) J Phys Chem 91:5247 Google Scholar
  99. 99.
    Mirsojew I, Ernst S, Weitkamp J, Knözinger H (1994) Catal Lett 24:235 Google Scholar
  100. 100.
    Brunner E (1995) Stud Surf Sci Catal 97:11 Google Scholar
  101. 101.
    Sachsenröder H, Brunner E, Koch M, Pfeifer H, Staudte B (1996) Microporous Mater 6:341 Google Scholar
  102. 102.
    Jänchen J, van Wolput JHMC, van de Ven LJM, de Haan JW, van Santen RA (1996) Catal Lett 39:147 Google Scholar
  103. 103.
    Maciel GE, Haw JF, Chuang I-S, Hawkins BL, Early TA, McKay DR, Petrakis L (1983) J Am Chem Soc 105:5529 Google Scholar
  104. 104.
    Ripmeester JA (1983) J Am Chem Soc 105:2925 Google Scholar
  105. 105.
    Pines A, Gibby MG, Waugh JS (1973) J Chem Phys 59:569 Google Scholar
  106. 106.
    Mehring M (1983) High resolution NMR in solids, 2nd edn. Springer, Berlin Google Scholar
  107. 107.
    Schulze D, Ernst H, Fenzke D, Meiler W, Pfeifer H (1990) J Phys Chem 94:3499 Google Scholar
  108. 108.
    Lunsford JH, Rothwell WP, Shen W (1985) J Am Chem Soc 107:1540 Google Scholar
  109. 109.
    Lunsford JH, Tutunjian PN, Chu P-J, Yeh EB, Zalewski DJ (1989) J Phys Chem 93:2590 Google Scholar
  110. 110.
    Baltusis L, Frye JS, Maciel GE (1987) J Am Chem Soc 109:40 Google Scholar
  111. 111.
    Peng L, Chupas PJ, Grey CP (2004) J Am Chem Soc 126:12254 Google Scholar
  112. 112.
    Haase F, Sauer J (1994) J Phys Chem 98:3083 Google Scholar
  113. 113.
    Krossner M, Sauer J (1996) J Phys Chem 100:6199 Google Scholar
  114. 114.
    Batamack P, Dorémieux-Morin C, Vincent R, Fraissard J (1991) Chem Phys Lett 180:545 Google Scholar
  115. 115.
    Batamack P, Dorémieux-Morin C, Fraissard J, Freude D (1991) J Phys Chem 95:3790 Google Scholar
  116. 116.
    Batamack P, Dorémieux-Morin C, Vincent R, Fraissard J (1993) J Phys Chem 97:9779 Google Scholar
  117. 117.
    Hirschler AE (1963) J Catal 2:428 Google Scholar
  118. 118.
    Plank CJ (1964) In: Sachtler WMH, Schuit GCA, Zwietering P (eds) Proceedings 3rd international congress on catalysis, Amsterdam, 1964. North-Holland, Amsterdam Google Scholar
  119. 119.
    Hunger M, Freude D, Pfeifer H (1991) J Chem Soc Faraday Trans 87:657 Google Scholar
  120. 120.
    Heeribout L, Dorémieux-Morin C, Nogier J-P, Vincent R, Fraissard J (1998) Microporous Mesoporous Mater 24:101 Google Scholar
  121. 121.
    Gale JD, Catlow CRA, Carruthers JR (1993) Chem Phys Lett 216:155 Google Scholar
  122. 122.
    Bates S, Dwyer J (1994) J Mol Struct (Theochem) 306:57 Google Scholar
  123. 123.
    Haase F, Sauer J (1995) J Am Chem Soc 117:3780 Google Scholar
  124. 124.
    Luz Z, Vega AJ (1987) J Phys Chem 91:374 Google Scholar
  125. 125.
    Hunger M, Horvath T (1995) Ber Bunsenges Phys Chem 99:1316 Google Scholar
  126. 126.
    Thursfield A, Anderson MW (1996) J Phys Chem 100:6698 Google Scholar
  127. 127.
    Biaglow AI, Gorte RJ, Kokotailo GT, White D (1994) J Catal 148:779 Google Scholar
  128. 128.
    Haw JF, Hall MB, Alvarado-Swaisgood AE, Munson EJ, Lin Z, Beck LW, Howard T (1994) J Am Chem Soc 116:7308 Google Scholar
  129. 129.
    Nicholas JB, Haw JF, Beck LW, Krawietz TR, Ferguson DB (1995) J Am Chem Soc 117:12350 Google Scholar
  130. 130.
    Mildner T, Freude D (1998) J Catal 178:309 Google Scholar
  131. 131.
    Beeler AJ, Orendt AM, Grant DM, Cutts PW, Michl J, Zilm KW, Downing JW, Facelli JC, Schindler MS, Kutzelnigg W (1984) J Am Chem Soc 106:7672 Google Scholar
  132. 132.
    Koch M, Brunner E, Pfeifer H, Zscherpel D (1994) Chem Phys Lett 228:501 Google Scholar
  133. 133.
    Geerlings P, Tariel N, Botrel A, Lissillour R, Mortier WJ (1984) J Phys Chem 88:5752 Google Scholar
  134. 134.
    Bates S, Dwyer J (1993) J Phys Chem 97:5897 Google Scholar
  135. 135.
    Neyman KM, Strodel P, Ruzankin SP, Schlensog N, Knözinger H, Rösch N (1995) Catal Lett 31:273 Google Scholar
  136. 136.
    Farnworth KJ, O'Malley PJ (1996) J Phys Chem 100:1814 Google Scholar
  137. 137.
    Gullion T, Schaefer J (1989) J Magn Reson 81:196 Google Scholar
  138. 138.
    Koch M (1996) Thesis, University of Leipzig Google Scholar
  139. 139.
    Kao H-M, Grey CP (1996) J Phys Chem 100:5105 Google Scholar
  140. 140.
    Dwyer J (1987) Stud Surf Sci Catal 37:333 Google Scholar
  141. 141.
    Karge HG (1991) Stud Surf Sci Catal 65:133 Google Scholar
  142. 142.
    Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, Chichester Google Scholar
  143. 143.
    Lippmaa E, Samoson A, Mägi M (1986) J Am Chem Soc 108:1730 Google Scholar
  144. 144.
    Kerr GT (1969) J Catal 15:200 Google Scholar
  145. 145.
    Samoson A, Lippmaa E, Engelhardt G, Lohse U, Jerschkewitz H-G (1987) Chem Phys Lett 134:589 Google Scholar
  146. 146.
    Grobet PJ, Geerts H, Tielen M, Martens JA, Jacobs PA (1989) Stud Surf Sci Catal 46:721 Google Scholar
  147. 147.
    Kellberg L, Linsten M, Jacobsen HJ (1991) Chem Phys Lett 182:120 Google Scholar
  148. 148.
    Gilson JP, Edwards GC, Peters AW, Rajagopalan K, Wormsbecher RF, Roberie TG, Shatlock MP (1987) J Chem Soc Chem Commun, p 91 Google Scholar
  149. 149.
    Ray GJ, Samoson A (1993) Zeolites 13:410 Google Scholar
  150. 150.
    Frydman L, Harwood JS (1995) J Am Chem Soc 117:5367 Google Scholar
  151. 151.
    Menezes SMC, Camorim VL, Lam YL, San Gil RAS, Bailly A, Amoureux JP (2001) Appl Catal A: General 207:367 Google Scholar
  152. 152.
    Müller D, Gessner W, Behrens H-J, Scheler G (1981) Chem Phys Lett 79:59 Google Scholar
  153. 153.
    Freude D, Haase J (1993) Quadrupole effects in solid-state nuclear magnetic resonance. In: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR basic principles and progress, vol 29. Springer, Berlin, p 1 Google Scholar
  154. 154.
    Samoson A, Lippmaa E, Pines A (1988) Mol Phys 65:1013 Google Scholar
  155. 155.
    Samoson A, Lippmaa E (1989) J Magn Reson 84:410 Google Scholar
  156. 156.
    Samoson A, Pines A (1989) Rev Sci Instrum 60:3239 Google Scholar
  157. 157.
    Woessner DE, Timken HKC (1990) J Magn Reson 90:411 Google Scholar
  158. 158.
    Ehresmann JO, Wang W, Herreros B, Luigi D-P, Venkatraman TN, Song W, Nicholas JB, Haw JF (2002) J Am Chem Soc 124:10868 Google Scholar
  159. 159.
    Majors PD, Ellis PD (1987) J Am Chem Soc 109:1648 Google Scholar
  160. 160.
    Kao H-M, Grey CP (1996) Chem Phys Lett 259:459 Google Scholar
  161. 161.
    Michael A, Meiler W, Michel D, Pfeifer H (1981) Chem Phys Lett 84:30 Google Scholar
  162. 162.
    Michael A, Meiler W, Michel D, Pfeifer H, Hoppach D, Delmau J (1986) J Chem Soc Faraday Trans I 82:3053 Google Scholar
  163. 163.
    Wutscherk T (1990) Thesis, University of Leipzig Google Scholar
  164. 164.
    Brunner E, Pfeifer H, Wutscherk T, Zscherpel D (1992) Z Phys Chemie 178:173 Google Scholar
  165. 165.
    Zscherpel D, Brunner E, Koch M, Pfeifer H (1995) Microporous Mater 4:141 Google Scholar
  166. 166.
    Mastikhin VM, Mudrakovsky IL, Filimonova SV (1988) Chem Phys Lett 149:175 Google Scholar
  167. 167.
    Borovkov VJ, Zhidomirov GM, Kazansky VB (1975) Zhurn Strukt Chim 16:308 Google Scholar
  168. 168.
    Swift TJ, Connick RE (1962) J Chem Phys 37:307 Google Scholar
  169. 169.
    Ettinger R, Blume P, Patterson A Jr, Lauterbur PC (1960) J Chem Phys 33:1597 Google Scholar
  170. 170.
    Forsén S, Hoffman R (1963) J Chem Phys 39:2892 Google Scholar
  171. 171.
    Hattori H (1995) Chem Rev 95:537 Google Scholar
  172. 172.
    Barthomeuf D (1996) In: Weitkamp J, Lücke B (eds) Proceedings of the DGMK-conference: catalysis on solid acids and bases. Berlin, 14–15 March 1996. DGMK Hamburg, p 65 Google Scholar
  173. 173.
    Huang M, Adnot A, Kaliaguine S (1992) J Am Chem Soc 114:10005 Google Scholar
  174. 174.
    Uytterhoeven L, Dompas D, Mortier W (1992) J Chem Soc Faraday Trans 88:2753 Google Scholar
  175. 175.
    Huang M, Kaliaguine S (1992) J Chem Soc Faraday Trans 88:751 Google Scholar
  176. 176.
    Mueller KT, Baltisberger JH, Wooten EW, Pines A (1992) J Phys Chem 96:7001 Google Scholar
  177. 177.
    Grandinetti PJ, Baltisberger JH, Farnan I, Stebbins JF, Werner U, Pines A (1995) J Phys Chem 99:12341 Google Scholar
  178. 178.
    Bull LM, Cheetham AK, Anupold T, Reinhold A, Samoson A, Sauer J, Bussemer B, Lee Y, Gann S, Shore J, Pines A, Dupree R (1998) J Am Chem Soc 120:3510 Google Scholar
  179. 179.
    Amoureux J-P, Bauer F, Ernst H, Fernandez C, Freude D, Michel D, Pingel U-T (1998) Chem Phys Lett 285:10 Google Scholar
  180. 180.
    Bull LM, Bussemer B, Anupold T, Reinhold A, Samoson A, Sauer J, Cheetham AK, Dupree R (2000) J Am Chem Soc 122:4948 Google Scholar
  181. 181.
    Freude D, Loeser T, Michel D, Pingel U, Prochnow D (2001) Sol State Nucl Magn Reson 20:46 Google Scholar
  182. 182.
    Readman JE, Kim N, Ziliox M, Grey CP (2002) Chem Commun, p 2808 Google Scholar
  183. 183.
    Bosácek V (1993) J Phys Chem 97:10732 Google Scholar
  184. 184.
    Kheir AA, Haw JF (1994) J Am Chem Soc 116:817 Google Scholar
  185. 185.
    Lima E, Lasperas M, de Menorval L-C, Tichit D, Fajula F (2004) J Catal 223:28 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Fachrichtung Chemie und Lebensmittelchemie, Bioanalytische ChemieTechnische Universität DresdenDresdenGermany
  2. 2.Universität LeipzigFakultät für Physik und GeowissenschaftenLeipzigGermany

Personalised recommendations