Skip to main content

Biodegradable polymer scaffolds to regenerate organs

  • Conference paper
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 122))

Abstract

The problem of donor scarcity precludes the widespread utilization of whole organ transplantation as a therapy to treat many diseases for which there is often no alternative treatment. Cell transplantation using biodegradable polymer scaffolds offers the possibility to create completely natural new tissue and replace organ function. Tissue inducing biodegradable polymers can also be utilized to regenerate certain tissues and without the need for in vitro cell culture. Biocompatible, biodegradable polymers play an important role in organ regeneration as temporary substrates to transplanted cells which allow cell attachment, growth, and retention of differentiated function. Novel processing techniques have been developed to manufacture reproducibly scaffolds with high porosities for cell seeding and large surface areas for cell attachment. These scaffolds have been used to demonstrate the feasibility of regenerating several organs.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. U.S. Department of Health and Human Services, P.H.S., Center for Disease Control (1991) Monthly Vital Statistics Report, 39: 1–28

    Google Scholar 

  2. Ishaug SL, Thomson RC, Mikos AG, Langer R (in press). In: Meyers RA (Ed) Encyclopedia of Molecular Biology and Biotechnology, VCH, New York

    Google Scholar 

  3. Peppas NA, Langer R (1994) Science, 263: 1715–1720

    PubMed  Google Scholar 

  4. Thomson RC, Ishaug SL, Mikos AG, Langer R (in press). In: Meyers RA (ED) Encyclopedia of Molecular Biology: Fundamentals and Applications, VCH Publishers, New York

    Google Scholar 

  5. Langer R, Vacanti JP (1993) Science, 260: 920–926

    PubMed  Google Scholar 

  6. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R (1988) J Pediatr Surg, 23: 3–9

    Google Scholar 

  7. Wilson JM, Birinyi LK, Salomon RN, Libby P, Callow AD, Mulligan RC (1989) Science, 244: 1344–1346

    PubMed  Google Scholar 

  8. Mikos AG, Papadaki MG, Kouvroukoglou S, Ishaug SL, Thomson RC (1994) Biotechnol Bioeng, 43: 673–677

    Article  Google Scholar 

  9. Freed LE, Vunjak-Novakovic G, Marquis JC, Langer, R (1994) Biotechnol Bioeng, 43: 597–604

    Article  Google Scholar 

  10. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R (1993) J Biomed Mater Res, 27: 11–23

    Article  PubMed  Google Scholar 

  11. Vacanti CA, Kim W, Upton J, Vacanti MP, Mooney D, Schloo B, Vacanti JP (1993) Transplant Proc, 25: 1019–1021

    PubMed  Google Scholar 

  12. Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL (1994) Biotechnol Bioeng, 43: 747–756

    Article  Google Scholar 

  13. Yannas IV (1988) in: Nimni ME (Ed) Collagen III, CRC Press, Boca Raton, Florida, pp 87–115

    Google Scholar 

  14. Bellamkonda R, Aebischer P (1994) Biotechnol Bioeng, 43: 543–554

    Article  Google Scholar 

  15. Woerly S (1993) Biomaterials, 14: 1056–1058

    Article  PubMed  Google Scholar 

  16. Cieslinski DA, Humes HD (1994) Biotechnol Bioeng, 43: 678–681

    Article  Google Scholar 

  17. Uyama S, Kaufmann PM, Tadeka T, Vacanti JP (1993) Transplantation, 55: 932–935

    PubMed  Google Scholar 

  18. Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D (1992) J Cell Physiol, 151: 497–505

    Article  PubMed  Google Scholar 

  19. Healy KE, Lom B, Hockberger PE (1994) Biotechnol Bioeng, 43: 792–800

    Article  Google Scholar 

  20. Folkman J, Klagsbrun M (1987) Science, 235: 442–447

    PubMed  Google Scholar 

  21. Langer R (1990) Science, 249: 1527–1533

    PubMed  Google Scholar 

  22. Gilding DK (1981) in: DF Williams (Ed) Biocompatibility of Clinical Implant Materials, CRC Press, Boca Raton, Florida, pp 209–232

    Google Scholar 

  23. Pulapura S, Kohn J (1992) J Biomater Appl, 6: 216–250

    PubMed  Google Scholar 

  24. Sawhney AS, Pathak CP, Hubell JA (1993) Macromolecules, 26: 581–587

    Article  Google Scholar 

  25. Vert M, Christel P, Chabot F, Leray J (1984) in: Hastings GW, Ducheyne P (Ed) Macromolecular Biomaterials, CRC Press, Boca Raton, Florida, pp 119–142

    Google Scholar 

  26. Benicewicz BC, Hopper PK (1991) J Bioact Compat Polym 6: 64–94

    Google Scholar 

  27. Engelberg I, Kohn J (1990) Biomaterials, 12: 292–304

    Article  Google Scholar 

  28. von Recum HA, Cleek RL, Eskin SG, Mikos AG (in press) Biomaterials

    Google Scholar 

  29. Cima LG, Vacanti JP, Vacanti C, Ingberg D, Mooney D, Langer R (1991) J Biomech Eng, 113: 143–151

    PubMed  Google Scholar 

  30. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) J Biomed Mater Res, 27: 183–189

    Article  PubMed  Google Scholar 

  31. Mooney DJ, Mazzoni CL, Organ GM, Puelacher WC, Vacanti JP, Langer R (1994) in: Mikos AG, Murphy RM, Bernstein H, Peppas NA (Ed) Biomaterials for Drug and Cell Delivery, MRS Symposium Proceedings, Vol 331, Materials Research Society, Pittsburgh, Pennsylvania, pp 47–52

    Google Scholar 

  32. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer, R, Winslow DN, Vacanti JP (1994) Polymer, 35: 1068–1077

    Article  Google Scholar 

  33. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993) Biomaterials, 14: 323–330

    Article  PubMed  Google Scholar 

  34. Mooney DJ, Organ G, Vacanti JP, Langer R (1994) Cell Transplantation, 3: 203–210

    PubMed  Google Scholar 

  35. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (in press) J Biomater Sci Polym Ed

    Google Scholar 

  36. Mikos AG, Lyman MD, Freed LE, Langer R (1994) Biomaterials, 15: 55–58

    Article  PubMed  Google Scholar 

  37. Wald HL, Sarakinos G, Lyman MD, Mikos AG, Vacanti JP, Langer R (1993) Biomaterials, 14: 270–278

    Article  PubMed  Google Scholar 

  38. Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Plast Reconstr Surg, 88: 753–759

    PubMed  Google Scholar 

  39. Wald HL (1989) Chondrocyte Culture on Biodegradable Polymer Substrates. M.S. Thesis Massachusetts Institute of Technology

    Google Scholar 

  40. Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG (1994) J Biomed Mater Res, 28: 1445–1453

    Article  PubMed  Google Scholar 

  41. Laurencin CT, Norman ME, Elgendy HM, El-Amin SF, Allcock HR, Pucher SR, Ambrosio, AA (1993) J Biomed Mater Res, 27: 963–973

    Article  PubMed  Google Scholar 

  42. Atala A, Vacanti JP, Peters CA, Mandell J, Retik AB, Freeman MR (1992) J Urol, 148: 658–662

    PubMed  Google Scholar 

  43. Organ GM, Mooney DJ, Hansen LK, Schloo B, Vacanti JP (1992) Transplant Proc, 24: 3009–3011

    PubMed  Google Scholar 

  44. Cima LG, Ingber DE, Vacanti JP, Langer R (1991) Biotechnol Bioeng, 38: 145–158

    Article  Google Scholar 

  45. Wake CM, Patrick CW, Mikos AG (1994) Cell Transplantation, 3: 339–343

    PubMed  Google Scholar 

  46. Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R (1993) Biotechnol Bioeng, 42: 716–723

    Article  Google Scholar 

  47. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Proc Natl Acad Sci USA, 86: 933–937

    PubMed  Google Scholar 

  48. Tountas CP, Bergman RA, Lewis TW, Stone HE, Pyrek JD, Mendenhall HV (1993) J Appl Biomater, 4: 261–268

    Article  PubMed  Google Scholar 

  49. Natsume T, Ike O, Okada T, Takimoto N, Shimizu Y, Ikada Y (1993) J Biomed Mater Res, 27: 867–875

    Article  PubMed  Google Scholar 

  50. Chvapil M, Speer DP, Holubec H, Chvapil TA, King DH (1993) J Biomed Mater Res, 27: 313–325

    Article  PubMed  Google Scholar 

  51. Cowin SC, Moss-Salentijn L, Moss ML (1991) J Biomech Eng, 113: 191–197

    PubMed  Google Scholar 

  52. Rubin CT, Hausman MR (1988) Rheum Dis Clin N Amer, 14: 503–517

    Google Scholar 

  53. Gibson LJ (1985) J Biomech, 18: 317–328

    Article  PubMed  Google Scholar 

  54. Carter DR, Hayes WC (1976) Science, 194: 1174–1176

    PubMed  Google Scholar 

  55. Sandberg MM, Aro HT, Vuorio EI (1993) Clin Orthop Related Res, 289: 292–312

    Google Scholar 

  56. Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Mikos AG (submitted) Biomaterials

    Google Scholar 

  57. Gross TP, Cox QGN, Jinnah RH (1993) Orthopedics, 16: 895–900

    PubMed  Google Scholar 

  58. Einhorn TA, Majeska RJ (1991) Clin Orthop Related Res, 262: 286–297

    Google Scholar 

  59. Covey DC, Albright JA (1989) Orthop Rev, 18: 857–863

    PubMed  Google Scholar 

  60. Gerhart TN, Miller RL, Kleshinski SJ, Hayes WC (1988) J Biomed Mater Res, 22: 1071–1082

    Article  PubMed  Google Scholar 

  61. Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Aufdemorte TB, Mikos AG (in press) Tissue Engineering

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicholas A. Peppas Robert S. Langer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Thomson, R.C., Wake, M.C., Yaszemski, M.J., Mikos, A.G. (1995). Biodegradable polymer scaffolds to regenerate organs. In: Peppas, N.A., Langer, R.S. (eds) Biopolymers II. Advances in Polymer Science, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540587888_18

Download citation

  • DOI: https://doi.org/10.1007/3540587888_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58788-0

  • Online ISBN: 978-3-540-49102-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics